

Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

PROJECT PLAN

CONSTRUCTION NOISE MITIGATION

MEASURES PLAN

DOCUMENT REFERENCE NUMBER:

HKCKR	- BTP	- PLN	- GEN -	OMS	000012	- G
Project Code	Issuer Code	Doc. Type	Location	Subject	Sequential No.	Rev

Prepared by:		INTERNAL REVIEW AND APPROVAL				
		Review by:		Endorsed by:	Approved by:	
COMPANY	BYTP	BYTP	BYTP	BYTP	BYTP	
NAME	Alex CHAN	Simon WONG	Ludovic JEANNE	Victor AU-YEUNG	Alan KAM	
POSITION	Environmental Officer	Environmental Manager	Method Manager	General Construction Manager	Project Manager	
SIGNATURE						
DATE						

Construction Noise Mitigation Measure Plan

Our ref.: HKCKR/BTP/PLN/GEN/OMS/000012/F

Ref.: EPD comments (Ref. (16) in Ax(1) to EP2/K2/A/04 pt.34)

No.	Reviewer	Document/Drawing Reference	Reviewer's Comment	Contractor's Response
1.		Ho Man Tin Shaft Worksite - Table 1	Please provide a reference for the proposed SWL of PME No. "CNP 068". Its SWL stated in this table is 100dB(A), but a different value is adopted in the construction noise calculation in Annex E. Please review and rectify.	SWL of PME No. "CNP 068" mentioned in Table 1 has been changed to 102dB(A).
2.	EPD	Yau Man Tei Shaft – Table 5 & Table 6	According to these tables, there would be 3 months of cumulative construction noise exceedance at NSR W-N25A, i.e. Prosperous Garden Block 1. However, according to the assessment results at Annex F, the duration should be 4 months (Dec 2021 & Sept – Nov 2022). Please review and rectify.	The relevant data in Table 5 & Table 6 has been amended.

Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

PROJECT PLAN

CONSTRUCTION NOISE MITIGATION MEASURES PLAN

(Ho Man Tin Shaft Worksite)

DOCUMENT STATUS

Revision History

Sections Summary of Revision
All Updated issue for approval
Sec 2.1, 2.4, 5.1.3, 5.1.8, Table 1, Table 4, Table 5, Table 7, Annex B, Annex E, Annex F, Address ET comments given on 25 Sep 2019
Sec 1.1.1, 2.4, 3.2.3, 5.1.8, Table 1, Table 4, Table 7, Annex E, Annex F Address IEC comments given on 25 Sep 2019
Sec 2.4 Address ET comments given on 26 Sep 2019
Sec 2.4, Table 1, Table 4, Sec 5.1.8, Annex EAddress IEC comments given on 26 Sep 2019
Sec 5.1.8, 6.2,Address EPD comments given onTable 1, Table 517 Apr 2020
Sec 5.1.6, Table 1, Table 4, Annex FAddress ET and IEC comments given on 23 and 24 Jun 2020
Sec 5.1.6 Address EPD comments given on 21 Oct 2020
Table 5, Table 6, Annex FAddress IEC comments given on 30 Mar 2021Annex D, Annex GNoise enclosure is proposed to replace the noise cover
Table of Content, S5.1.6Address IEC comments given on 16 Apr 2021
All Cover all three works area and address comments from EPD, IEC and ET.
HMTS: Table 1, Table 4Address EPD comments given on 11 Aug 2021HMTS: Table 5, Table 6Address IEC comments given on 8 Aug 2021 and 4 Oct 2021.
Sec 2.4, Table 1, Table 4, Sec 5.1.8, Annex EAddress IEC co 26 Sep 2019Sec 5.1.8, 6.2, Table 1, Table 5Address EPD co 17 Apr 2020Sec 5.1.6, Table 1, Table 4, Annex FAddress ET and given on 23 and Sec 5.1.6Sec 5.1.6Address EPD co 21 Oct 2020Table 5, Table 6, Annex F Annex D, Annex GAddress IEC co 30 Mar 2021Table of Content, S5.1.6Address IEC co 16 Apr 2021AllCover all three address comment and ET.HMTS: Table 1, Table 4 YMTS: Table 5, Table 6, Table 6Address IEC co 11 Aug 2021

TABLE OF CONTENT

Page

1.	INTRODUCTION	3
2.	CONSTRUCTION WORKS / ACTIVITIES OF THE PROJECT	5
3.	ASSESSMENT CRITERIA AND METHODOLOGY	7
4.	NOISE SENSITIVE RECEIVERS	8
5.	ASSESSMENT OF CONSTRUCTION NOISE IMPACT	9
6.	CONCLUSION	12

TABLES

Table 1	Summary of PME
Table 2	Daytime Construction Noise Criteria
Table 3	Summary of Predicted Noise Level at the Identified NSRs in the EIA Report (Mitigated)
Table 4	Summary of PME with Proposed Mitigation Measures
Table 5	Summary of Predicted Noise Levels at the NSRs (Mitigated)
Table 6	Updated Mitigated Construction Noise Impact at the Identified NSRs
Table 7	Updated Mitigated Construction Noise Impact at the Educational Institution during the Examination Period

ANNEX

A Layout Plan of CKR-Central Tunnel and Ho Man Tin Access Shaft Site
 B Construction Programme
 C Photo of the Identified NSRs
 D Details of Noise Enclosure
 E Predicted Noise Level at the NSRs
 F Cumulative Noise Level at the NSRs
 G Details of Acoustic Materials for Construction of Noise Enclosure

1. INTRODUCTION

1.1 Project Description

- 1.1.1 Following the completion of Contract HY/2014/09, CKR-HMTS construction site was taken over by Bouygues Travaux Publics (BYTP). BYTP was commissioned by the Highway Department of the HKSAR as the Main Contractor for the Contract HY/2018/08. This Construction Noise Mitigation Measure Plan (CNMMP) is updated based on the approved CNMMP for CKR-HMTS under CKR-CT Contract.
- 1.1.2 Highways Department (HyD) commissioned the Design and Construction Assignment for the Central Kowloon Route in Jun 1998. CKR is a duel 3-lane trunk road across central Kowloon linking the West Kowloon in the west and the proposed Kai Tak Development (KTD) in the east. The CKR will be about 4.7km long with an underground tunnel section of about 3.9km long, in particular, there will be an underwater tunnel of about 370m long in Kowloon Bay to the north of the To Kwa Wan Typhoon Shelter. It will connect the West Kowloon Highway at Yau Ma Tei Interchange with the road network at Kowloon Bay and the future Trunk Road T2 at KTD which will connect to the future Tseung Kwan O Lam Tin Tunnel (TKO-LTT) and Cross Bay Link (CBL). CKR, Trunk Road T2 and TKO-LTT will form a strategic highway link, namely Route 6, connecting West Kowloon and Tseung Kwan O. Consultancy studies for Trunk Road T2, TKO-LTT and CBL have been commissioned by CEDD. In addition, 3 ventilation buildings, which will be located in Yau Ma Tei, Ho Man Tin and ex-Kai Tak airport area, are proposed to ensure acceptable air quality within the tunnel.
- 1.1.3 The Central Kowloon Route Design and Construction Environmental Impact Assessment Report (Register No.: AEIAR-171/2013) was approved with conditions by the Environmental Protection Department (EPD) on 11 July 2013. An Environmental Permit (EP) (No. EP-457/2013) was issued on 9 Aug 2013. Variations of EP (VEP) was subsequently applied for and the latest EP (EP-457/2013/C) was issued by EPD on 16 Jan 2017.
- 1.1.4 Contract HY/2014/09 was completed on 19 September 2019. The Environmental Team of Contract HY/2018/08 shall continue the EM&A impact monitoring at the noise monitoring station (M-N3) - SKH Tsoi Kung Po Secondary School from 20 September 2019.
- 1.1.5 The activities planned for the Ho Man Tin Access Shaft (HMTS) under the EP include:
 - Construction of diaphragm wall,
 - Foundation for the ventilation building,
 - Construction of cavern and temporary adit under the shaft, and
 - Construction of Eastbound and Westbound of the main tunnels towards Yau Ma Tei East Access Shaft (YMTE) and Ma Tau Kok West Access Shaft (MTKW).

The overall layout plan of Central Tunnel and HMTS are enclosed in Annex A.

- 1.1.6 It is anticipated that the Contractors of Yau Ma Tei East (YMTE) and Ma Tau Kok West (MTKW) will hand over their sites to BYTP in April 2020 and Jan 2021 respectively. BYTP will update this CNMMP accordingly in due course.
- 1.1.7 Condition 2.9 of the EP No. EP-457/2013/C stipulated that to further reduce the air-borne construction noise impacts on Ko Fai House of Kwun Fai Court (NSR), the Permit Holder shall,

no later than one month before commencement of the construction of the corresponding component(s) of the Project, submit four hard copies and one electronic copy of an updated CNMMP to the Director of EPD for approval. The plan shall include:

- (a) A schedule of construction works to be carried out at the works areas of the Project within 300m from the NSRs;
- (b) An updated construction methodology of the construction works;
- (c) An updated Power Mechanical Equipment (PME) list for the construction works;
- (d) An updated proposal of air-borne construction noise mitigation measures for the identified NSR (Ko Fai House), including the provision of noise barriers, enclosures;
- (e) Other activities proposed by the Permit Holder; and
- (f) An updated prediction of noise levels in accordance with the above updated information and mitigation proposals in place.
- 1.1.8 The CNMMP will be reviewed upon the proposed change of construction methods or materials. The updated PME listed in Table 1 represented the worst-case scenario which is practicable for completing the works required by the Contract within the scheduled timeframe.

2. CONSTRUCTION WORKS / ACTIVITIES OF THE PROJECT

- 2.1 Construction works will be commenced in late Oct 2019 and expected to be completed in early 2024. The programme for the construction works described in above Section 1.1.5 are presented in Annex B.
- 2.2 The proposed construction works will generally follow the methodologies recommended in Chapter 3 of the approved EIA report. Drill and Blast methodology will be adopted for the construction of adit, cavern and main tunnel.
- 2.3 Application of electronic detonator will be adopted for blasting in certain tunnel sections. Electronic detonator was widely used in other tunnel projects in Hong Kong (HATS, WIL, XRL and TKO-LTT). Comparing to the traditional shock tube detonator system, qualitative review revealed that the improved design of electronic detonator can (1) eliminate the likelihood of failure caused by human errors and (2) provide a reliable control of ground vibration thus less ground-borne noise disturbance to the public is anticipated.
- 2.4 A summary of PME proposed for the construction works is shown in Table 1. The respective Sound Power Level (SWL) of the PME can be obtained from:
 - (1) EPD's Technical Memorandum on Noise from Construction Work Other than Percussive Pilling.
 - (2) List of SWLs of other commonly used PME or
 - (3) British Standard 5228 Part 1:2009 Code of Practice for Noise and Vibration Control on Construction and Open Sites.

As recommended in the EIA report, quiet equipment and adjustment in utilization rates should be adopted according to Appendix 5.4 of the EIA report to minimize the noise impact to the NSRs. Extra PME have been proposed to take account the latest construction programme and PME inventory in addition to the quiet PME proposed in the EIA report.

PME (% Operation)	Reference	SWL, dB(A)*
Air blower (100%)	CNP 006	95
Air Compressor (50%)	CNP 002	99
Water Pump, submersible (electric) (100%)	CNP 283	85
Aerial work platform, working height $\leq 13m$ (50%)	BS5228 Table C.4	92
Grout mixer (50%)	CNP 105	87
Grout pump (50%)	CNP 106	102
Concrete Mixer (50%)	CNP 045	93
Concrete Lorry Mixer (30%)	CNP 044	104
Shotcreting machine (50%)	BS5228 Table D.6/13	105
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	<mark>100</mark>
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (50%)	CNP 068	<mark>102</mark>
Light good vehicle < 5.5 tonne (50%)	CNP 143	98
Loader, wheeled (50%)	CNP 081	109
Piling, vibrating hammer (50%)	CNP 172	112
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102
Piling, diaphragm wall, hydraulic extractor (100%)	CNP 163	90

Table 1: Summary of PME proposed for construction works

PME (% Operation)	Reference	SWL, dB(A)*
Ventilation fan (100%)	CNP 241	108
Excavator, tracked (50%)	EPD-07059	103
Breaker, excavator mounted (hydraulic) (50%)	BS5228 Table D.8/13	107
Rock drill, (hydraulic) (50%)	SIL EIA [#]	105
Mobile crane (50%)	EPD-09573	99

* Noise data refers to the Quiet Plant in Appendix 5.4 and Appendix 5.6a of the CKR EIA report.

Sound Power Level refers to EPD website (Sound Power Level of other commonly used PME)

BS5228 – Code of practice for noise and vibration control on construction and open sites, and the Technical Memorandum on Noise from Construction Work Other than Percussive Piling (GW-TM) under the Noise Control Ordinance.

** Series of this kind of PME with same or lower SWL will be adopted.

Reference to Approved South Island Line (East) EIA

3. ASSESSMENT CRITERIA AND METHODOLOGY

3.1 Assessment Criteria

3.1.1 Noise impacts arising from the construction works at HMTS are assessed in accordance with the criteria given in the Technical Memoranda under the Noise Control Ordinance (NCO), and the Technical Memorandum on Environmental Impact Assessment. The daytime construction noise criteria are listed in Table 2.

Table 2:	Daytime	construction	noise	criteria
	2			

Use	Acceptable Noise Level in Leq (30-min), dB(A)
Residential	75
Educational Institute (Examination Period)	70 (65)

3.2 Assessment Methodology

- 3.2.1 Construction noise assessment was carried out according to the methodology adopted in the EIA report. The utilization rate for each PME was estimated individually for the corresponding activity to ensure it is practical and consistent with the assumptions made in the EIA report.
- 3.2.2 BYTP confirmed that the programme and plant inventory are reasonable and practicable allowing the completion of works within the schedule timeframe.
- 3.2.3 All mitigation measures and their effectiveness evaluated in the EIA report including adoption of quiet PME, percentage on-time for each PME, movable noise barrier and noise enclosure for the PME were considered in this CNMMP. Details of acoustic materials to construct the noise enclosure are enclosed in Annex G.
- 3.2.4 To predict the noise level, PME are divided into groups required for each respective construction task. The purpose is to identify the worst-case scenario representing those PME that will be in use concurrently at any time. The total Sound Pressure Level (SPL) of each construction task at the identified NSR is calculated according to the Sound Power Level (SWL) of each PME and the distance attenuation to the NSR. If more than one construction task will be carried out concurrently, the total SPL is predicted by adding up all SPL of concurrent construction tasks in logarithmic scale.
- 3.2.5 Tunnel works will involve alternating cycles from drilling to mucking out. Therefore, tunnel excavation activities will be operated in sequence rather than concurrently.
- 3.2.6 A positive 3dB(A) façade correction is added to the predicted noise level to account for the façade effect at the NSR.

4. NOISE SENSITIVE RECEIVERS

4.1 According to Condition 2.9 of the EP, Ko Fai House of Kwun Fai Court was identified as a representative NSR for the assessment. In this CNMMP, other NSRs identified in the EIA report will also be assessed. The predicted noise levels at the identified NSRs are summarized in Table 3. The noise assessment in EIA report revealed that exceedance of 5dB(A) will be anticipated during the examination period of SKH Tosi Kung Po Secondary School.

NSR	NSR Description	Uses	Criterion	Max. Mitigated Noise	Exceedance [3] dB(A)
ID			[1] dB(A)	<i>Level</i> [2] dB(A)	
M-N1	Kar Man House, Oi Man Estate	R	75	66	-
M-N2	Carmel on the Hill	R	75	63	-
M-N3	SKH Tsoi Kung Po	Е	70(65)	70	1 month (Jan/Feb 2018)
	Secondary School				(5dB(A))
					2 months
					(Jun 2018, Jan 2019)
					(1-4dB(A))
M-N4	Man Fuk House Block A	R	75	63	-
M-N5	Cascades Block A	R	75	63	-
M-N6	Ko Fai House, Kwun Fai Court	R	73	73	-
M-P3	Ultima	R	75	75	-

Table 3: Summary of mitigated noise level predicted at the identified NSRs in EIA report

[1] Values in parentheses indicate the noise criterion during examination period of educational institution

[2] Bolded values mean exceedance of the relevant noise criteria.

[3] The normal examination period of M-N3 are schedule in January and June. In 2018, there are 2 days examinations will be held on 01 and 02 Feb 2018 (Refer to Appendix .5.6F of the EIA report).

4.2 The locations of identified NSRs are shown in Figure 1:

Figure 1: Location plan of identified NSRs

Photos of identified NSRs are presented in Annex C

5. ASSESSMENT OF CONSTRUCTION NOISE IMPACT

5.1 Mitigation Measures

- 5.1.1 The mitigation measures proposed in the EIA report will be adopted, i.e. Erection of movable barrier and noise enclosure. PME with adopted mitigation measures are summarized in Table 4.
- 5.1.2 Noise reduction of 5dB(A) is proposed for the movable barrier for the PME operating at surface.
- 5.1.3 All PME for tunnel excavation shall be operated at the shaft bottom (107m below the ground level) with a noise enclosure covering the shaft. In this case, the barrier effect proposed for the PME operating inside the shaft is 15dB(A).
- 5.1.4 A 62m x 32m and 24m (H) noise enclosure was constructed for the PME operating inside access shaft. The noise enclosure was basically constructed with (i) four side walls and a top cover, (ii) acoustic doors for the PME access, (iii) openings for ventilation purpose and (iv) lobby house for man access. Details of the noise enclosure are presented in Annex D. PME with proposed mitigation measures are summarized in Table 4.

PME (% Operation)	Proposed Mitigation Measures	Noise Reduction, dB(A)
Air blower (100%)		
Air Compressor (50%)		
Water Pump, submersible (electric) (100%)		
Aerial work platform, working height $\leq 13m$ (50%)		
Grout pump (50%)		
Grout mixer (50%)	Noisa anglosura	15 (5 1)
Shotcreting Machine (50%)	Noise enclosure	15 (Tunnel)
Light good vehicle < 5.5 tonne (50%)		
Loader, wheeled (50%)		
Ventilation fan (100%)		
Excavator, tracked (50%)		
Breaker, excavator mounted (hydraulic) (50%)		
Rock drill, crawler mounted (hydraulic) (50%)		
Air Compressor (50%)		
Water Pump, submersible (electric) (100%)		
Aerial work platform, working height $\leq 13m$ (50%)		
Concrete Mixer (100%)		
Concrete Lorry Mixer (30%)	Movable barrier	5 (Surface)
Dump Truck, 5.5 tonne \leq GVW \leq 38 tonne (30%)		
Dump Truck, 5.5 tonne \leq GVW \leq 38 tonne (50%)		
Mobile crane (50%)		
Piling, vibrating hammer (50%)		
Piling, diaphragm wall bentonite filtering plant (50%)		
Piling, diaphragm wall, hydraulic extractor (50%)		

 Table 4:
 Summary of PME with proposed mitigation measures

5.1.5 According to the construction programme, noise assessments at the NSRs with implementation of proposed mitigation measures are presented in Annex E. The cumulative noise assessment to each NSR due to the concurrent construction activities are presented in Annex F. The cumulative noise levels are summarized in Table 5.

NSR ID	NSR Description	Uses	Criterion [1] dB(A)	Mitigated Noise	Exceedance dB(A)	Exceedance Duration/Months
M-N1	Kar Man House, Oi Man Estate	R	75	53 - 59	-	-
M-N2	Carmel on the Hill	R	75	53 - 59	-	-
M-N3	SKH Tsoi Kung Po Secondary School	Е	70 (65)	62-68 (62-63)	-	-
M-N4	Man Fuk House Block A	R	75	54 - 60	-	-
M-N5	Cascades Block A	R	75	53 - 59	-	-
M-N6	Ko Fai House, Kwun Fai Court	R	75	64 - 70	-	-
M-P3	Ultima	R	75	57 - 63	-	-

Table 5: Summary of cumulative noise levels at the NSRs (Mitigated)

[1] Values in parentheses indicate the noise criterion during examination period of educational institution.[2] Values in parentheses indicate the mitigated noise level during examination period.

- 5.1.6 The examination period of SKH Tsoi Kung Po Secondary School will be as follows:
 - 18th -30th Oct 2019
 - 6th Jan 2020 11th Feb 2020
 - 20th -25th Mar 2020
 - 3rd -18th Jun 2020
 - 29^{th} Jun $2020 6^{\text{th}}$ Jul 2020
 - Jan-Apr 2021, Jul 2021

To avoid the exceedance during the examination period, BYTP shall closely liaise with the school for re-arrangement of noisy construction activity or minimizing operation of PME during the examination period. Apart from the EM&A impact monitoring carried out by the ET, BYTP shall carry out additional noise monitoring during the examination period.

In case of non-compliance with the construction noise criteria, ET shall continue to carry out the impact monitoring until the exceedance is rectified or demonstrated to be unrelated to the construction activities.

BYTP will carry out the following noise abatement measures during the examination periods:

- Implement good site practices, such as re-schedule the noisy construction activities and to limit noise emission at the sources;
- Provide movable noise barrier as practicable as possible for the mobile PME, such as excavator, breaker, mobile crane, concrete lorry mixer, etc.;
- Relocate mobile PME as far as possible from the school;
- Turn off all idle equipment and deploy Quality Powered Mechanical Equipment (QPME).
- 5.1.7 The potential noise impacts at the identified NSRs due to the construction works at HMTS are updated in Table 6.

NSR	Noise	E	IA Prediction		CNMMP Prediction							
	Criteria	Max Noise	Exceedance	Duration	Max Noise	Max Noise Exceedance Durati						
	dB(A)	Level	(Mor	nth)	Level dB(A)	(Month)						
		dB(A)	1-4 dB(A)	5 dB(A)		1-4 dB(A)	5 dB(A)					
M-N1	75	66	-	-	59	-	-					
M-N2	75	63	-	-	59	-	-					
M-N3	70	70	-	-	68	-	-					
M-N4	75	63	-	-	60	-	-					
M-N5	75	63	-	-	59	-	-					
M-N6	75	73	-	-	70	-	-					
M-P3	75	75	-	-	63	-	-					

Table 6: Updated mitigated construction noise impact at the identified NSRs

The potential noise impact at the NSR M-N3 SKH Tsoi Kung Po Secondary School) is updated in Table 7.

Table 7: Updated mitigated construction noise impact at NSR M-N3 during the examination period

NSR	Noise	EI	A Prediction		CNMMP Prediction						
	dB(A)	Max Noise Level, dB(A)	Exceedance (Mor	Duration h)	Max Noise Level dB(A)	Exceedance Duration (Month)					
			1-4 dB(A)	5 dB(A)		1-4 dB(A)	5 dB(A)				
M-N3	65	70	2 Jun 2018 Jan 2019	1 Jan/Feb 2018	63	-	-				

- 5.1.8 With the implementation of the above-mentioned measures, there is no residual impact predicted at all residential NSRs and school during normal school days. To ensure there is no exceedance, the proposed PME (Piling, vibrating hammer) will not be operated during the examination period. From the CNMMP prediction, no noise exceedance is predicted at M-N3. In other words, the construction noise impact predicted from the CNMMP is reduced in respect of the level of exceedance.
- 5.1.9 This CNMMP is updated to review the potential noise impact on the NSR M-N3 (School schedule is only available up to August 2021).

6. CONCLUSION

- 6.1 This CNMMP predicted the construction noise impact arising from the Ho Man Tin Access Shaft construction site to the identified NSRs. This plan has updated the information on PMEs and works programme which will be adopted by Bouygues Travaux Publics. The proposed mitigation measures including use of quiet QPME, movable barriers and noise enclosure will be implemented.
- 6.2 From the CNMMP prediction, no noise exceedance is predicted at the M-N3 during the examination period. The construction noise impact would be reduced in terms of duration when comparing the CNMMP prediction to the EIA prediction.
- 6.3 Subsequent review and update of this plan will be performed during the construction phase and liaison with the affected parties will be carried out to minimize the construction noise impact as far as practicable. Attention will be paid to the construction activities which are predicted to give noise exceedances. Appropriate mitigation measure such as re-arrangement of noisy activities during the examination period of the SKH Tsoi Kung Po Secondary School shall be implemented when necessary.

Annex A

Layout Plan of CKR-CT and Ho Man Tin Access Shaft Construction Site

Site boundary of Ho Man Tin Access Shaft Construction Site

Annex B

Construction Programme

Contract N Central Ko	lo. HY/2018/08 wloon Route - Central Tunnel																																								
HMTS Major Works Programme				Calendar Year / Month																																					
				2019)					2020	0								202	1								202	2				2023								
item	Description of Works	Duration	Sep	Oct Nov	Dec	Jan	Feb	Apr	Мау	un	Aug	Sep	Oct	Nov Dec	Jan	Feb	Apr	Мау	unf	Jul Au <i>p</i>	Sep	Oct	Nov Dec	Jan	Feb	Mar Anr	Мау	Jun	Aug	Sep	Oct	Dec	Jan	Feb Mar	Apr	May	Inf	Aug	Sep	Nov	Dec
1	Ventilation Building Foundation	7 months																																							
2	Tunnel Excavation (Adit, Cavern & Main Tunnel)	39 months																																							
3	Construction of Diaphragm Wall	9 months																																							

Annex C

Photo of Identified NSRs

CKR - Central Portion

Location	Photo
al Portion	
Kar Man House, Oi Man Estate	
I Portion	
Carmel on the Hill	
Dortion	
	900
SKH Tsoi Kung Po Secondary School	
	I Portion Kar Man House, Oi Man Estate

NSR No.	Location	Photo
CKR - Centra	al Portion	
M-N4	Man Fuk House Block A	
CKR - Centra	al Portion	
M-N5	Cascades Block A	
CKB - Centra	al Portion	
M-N6	Ko Fai House, Kwun Fai Court	
M-P3	Ultima	

Annex D

Details of Noise Enclosure

IY/2018/08 e - Central Tunnel	drawing no. HKCKR/BTP/S	SKT/HMS/TSI/00	0267		
I TIN OISE ENCLOSURE	issue status IFC	creation date 19/05/2020	REVISION		
– DETAIL	paper size A3	scale 1 : 400	page 1 /7		

IY/2018/08 e - Central Tunnel	drawing no. HKCKR/BTP/S	SKT/HMS/TSI/00	0267		
I TIN OISE ENCLOSURE	issue status IFC	creation date 19/05/2020	REVISION		
– DETAIL	paper size A3	scale 1 : 400	PAGE 3 /7		

IY/2018/08	draming no.								
e - Central Tunnel	HKCKR/BTP/SKT/HMS/TSI/000267								
TIN	issue status	creation date	REVISION						
OISE ENCLOSURE	IFC	19/05/2020							
- DETAIL	paper size	scale	page						
	A3	1 : 400	5 /7						

SIZE	REMARKS
6mm THK. CHANNEL	GRADE Q 235
VERT.) + 4 NOS. (HORI.) PER FRAME	GRADE S275
VERT.) + 4 NOS. (HORI.) PER FRAME	GRADE S275
DF M12 GRADE 4.6	SPACED AT 750mm c/c MAX
N. 220mm	GRADE S275
60 x 5mm SHS	GRADE S275 HANGER SPACED AT 750mm o/o
ONSTRUCT BY OTHERS	-
ETARY PRODUCT	-
nø WASHER GRADE 4.6	-

	DRAWING NO.										
Y/2018/08 e - Central Tunnel	HKCKR/BTP/W	HKCKR/BTP/MDG/HMS/TSI/338223									
(SURFACE) IOISE ENCLOSURE DOOR	issue status FOR INFORMATION	creation date 21/07/2020	REVISION								
	PAPER SIZE	SCALE	PAGE								
	A3	N.T.S.	10/10								

SIZE	REMARKS
6mm THK. CHANNEL	GRADE Q 235
(VERT.) + 7 NOS. (HORI.) PER FRAME	GRADE S275
OF M12 GRADE 4.6	SPACED AT 750mm c/c MAX
IN. 270mm	GRADE S275
60 x 5mm SHS	GRADE S275 HANGER SPACED AT 750mm o/o
ONSTRUCT BY OTHERS	-
ETARY PRODUCT	-
m# WASHER GRADE 4.6	-

Y/2018/08 e - Central Tunnel	drawing no. HKCKR/BTP/N	IDG/HMS/TSI/33	8224
(SURFACE) OISE ENCLOSURE DOOR	issue status FOR INFORMATION	creation date 21/07/2020	REVISION
	paper size A3	scale N.T.S.	page 5/5

Y/2018/08	DRAWING NO.								
e - Central Tunnel	HKCKR/BTP/MDG/HMS/TSI/338223								
(SURFACE)	issue status	creation date 21/07/2020	revision						
IOISE ENCLOSURE DOOR	FOR INFORMATION		A						
	paper size	scale	page						
	A3	N.T.S.	3/10						

				1								1		
Бя		-	-	-	-	_ !	MAIN CONTRACTOR	CLIENT	THE SUPERVISOR	PROJECT	Contract No. HY/2018/08	DRAWING NO.		
7_a.d		-	-	-	-	-					Central Kowloon Route - Central Tunnel	HKCKR/BIP/I	MDG/HMS/TSI/3	538223
321.		-	-	-	-	-		· · · · · · · · · · · · · · · · · · ·	MACDONALD	DO ANNO TIT		ISSUE STATUS	CREATION DATE	REVISION
-33		_	-	-	-	_	BOUYGUES	莱 风君	CONTRACTOR'S TEMPORARY WORK DESIGNER	DRAWING III	HO MAN TIN (SURFACE)	FOR INFORMATION	21/07/2020	A
-tsi		_	_	-	_	-	TRAVAUX PUBLICS	HIGHWAYS DEPARTMENT			DETAIL DRAWING OF 7.5m NOISE ENCLOSURE DOOR		, ,	
-hms	A FIRST ISSUE	21/07/2020	KNC	KNC	KNC	KNC			aurecon			PAPER SIZE	SCALE	PAGE 8/10
-6pm	REV DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	IN-CHARGE						AJ	N.I.S.	

Annex E

Predicted Noise Level at the NSRs

Predicted Noise Level for NSR

BOUYGUES TRAVAUX PUBLICS

Kar Man House, Oi Man Estate (M-N1)

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	175	-53	-5	3	44.16
Air Compressor (50%)	CNP 002	99	1	99	175	-53	-5	3	44.16
Piling, vibrating hammer (50%)	CNP 172	112	1	112	175	-53	-5	3	57.16
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	175	-53	-5	3	37.16
								Total CNL	57.61

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	175	-53	-15	3	38.16
Air Compressor (50%)	CNP 002	99	1	99	175	-53	-15	3	34.16
Water Pump, submersible (electric)	CNP 283	85	10	95	175	-53	-15	3	30.16
Mobile crane (50%)	EPD-09573	99	1	99	175	-53	-5	3	44.16
Aerial work platform, working height $\leq 13m$ (50%)	BS 5228 Table C.4	92	2	95	175	-53	-15	3	30.16
Grout pump (50%)	CNP 106	102	1	102	175	-53	-15	3	37.16
Grout mixer (50%)	CNP 105	87	1	87	175	-53	-15	3	22.16
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	175	-53	-15	3	40.16
Loader, wheeled (50%)	CNP 081	109	1	109	175	-53	-15	3	44.16
Dump Truck, 5.5 tonne < $\text{GVW} \le 38$ tonne (50%)	CNP 068	102	1	102	175	-53	-5	3	47.16
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	175	-53	-15	3	33.16
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	175	-53	-5	3	38.16
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	175	-53	-15	3	38.16
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	175	-53	-15	3	42.16
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	175	-53	-15	3	40.16
Ventilation fan	CNP 241	108	1	108	175	-53	-15	3	43.16
								Total CNL	52.87

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)	
Construction of Diaphragm Wall										
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	175	-53	-5	3	49.16	
Mobile crane (50%)	EPD-09573	99	1	99	175	-53	-5	3	44.16	
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (30%)	CNP 068	100	1	100	175	-53	-5	3	45.16	
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	175	-53	-5	3	36.16	
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	175	-53	-5	3	47.16	
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	175	-53	-5	3	35.16	
								Total CNL	53.02	

Predicted Noise Level for NSR

BOUYGUES TRAVAUX PUBLICS

Carmel on the Hill (M-N2)

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	175	-53	-5	3	44.16
Air Compressor (50%)	CNP 002	99	1	99	175	-53	-5	3	44.16
Piling, vibrating hammer (50%)	CNP 172	112	1	112	175	-53	-5	3	57.16
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	175	-53	-5	3	37.16
								Total CNL	57.61

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	175	-53	-15	3	38.16
Air Compressor (50%)	CNP 002	99	1	99	175	-53	-15	3	34.16
Water Pump, submersible (electric)	CNP 283	85	10	95	175	-53	-15	3	30.16
Mobile crane (50%)	EPD-09573	99	1	99	175	-53	-5	3	44.16
Aerial work platform, working height $\leq 13m$ (50%)	BS 5228 Table C.4	92	2	95	175	-53	-15	3	30.16
Grout pump (50%)	CNP 106	102	1	102	175	-53	-15	3	37.16
Grout mixer (50%)	CNP 105	87	1	87	175	-53	-15	3	22.16
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	175	-53	-15	3	40.16
Loader, wheeled (50%)	CNP 081	109	1	109	175	-53	-15	3	44.16
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (50%)	CNP 068	102	1	102	175	-53	-5	3	47.16
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	175	-53	-15	3	33.16
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	175	-53	-5	3	38.16
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	175	-53	-15	3	38.16
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	175	-53	-15	3	42.16
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	175	-53	-15	3	40.16
Ventilation fan	CNP 241	108	1	108	175	-53	-15	3	43.16
				•	•	•	•	Total CNL	52.87

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	175	-53	-5	3	49.16
Mobile crane (50%)	EPD-09573	99	1	99	175	-53	-5	3	44.16
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	175	-53	-5	3	45.16
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	175	-53	-5	3	36.16
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	175	-53	-5	3	47.16
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	175	-53	-5	3	35.16
								Total CNL	53.02

BOUYGUES TRAVAUX PUBLICS

Predicted Noise Level for NSR

SKH Tsoi Kung Po Secondary School (M-N3)

ſ

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	65	-44	-5	3	52.76
Air Compressor (50%)	CNP 002	99	1	99	65	-44	-5	3	52.76
Piling, vibrating hammer (50%)	CNP 172	112	1	112	65	-44	-5	3	65.76
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	65	-44	-5	3	45.76
								Total CNL	66.21

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	65	-44	-15	3	46.76
Air Compressor (50%)	CNP 002	99	1	99	65	-44	-15	3	42.76
Water Pump, submersible (electric)	CNP 283	85	10	95	65	-44	-15	3	38.76
Mobile crane (50%)	EPD-09573	99	1	99	65	-44	-5	3	52.76
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	65	-44	-15	3	38.76
Grout pump (50%)	CNP 106	102	1	102	65	-44	-15	3	45.76
Grout mixer (50%)	CNP 105	87	1	87	65	-44	-15	3	30.76
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	65	-44	-15	3	48.76
Loader, wheeled (50%)	CNP 081	109	1	109	65	-44	-15	3	52.76
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (50%)	CNP 068	102	1	102	65	-44	-5	3	55.76
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	65	-44	-15	3	41.76
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	65	-44	-5	3	46.76
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	65	-44	-15	3	46.76
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	65	-44	-15	3	50.76
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	65	-44	-15	3	48.76
Ventilation fan	CNP 241	108	1	108	65	-44	-15	3	51.76
			•		•			Total CNL	61.47

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	65	-44	-5	3	57.76
Mobile crane (50%)	EPD-09573	99	1	99	65	-44	-5	3	52.76
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	65	-44	-5	3	53.76
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	65	-44	-5	3	44.76
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	65	-44	-5	3	55.76
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	65	-44	-5	3	43.76
								Total CNL	61.63

BOUYGUES TRAVAUX PUBLICS

Predicted Noise Level for NSR

SKH Tsoi Kung Po Secondary School (M-N3) - During Examination Period

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	65	-44	-5	3	52.76
Air Compressor (50%)	CNP 002	99	1	99	65	-44	-5	3	52.76
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	65	-44	-5	3	45.76
								Total CNL	56.18

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)	
Tunnel Excavation										
Air Blower	CNP 006	95	6	103	65	-44	-15	3	46.76	
Air Compressor (50%)	CNP 002	99	1	99	65	-44	-15	3	42.76	
Water Pump, submersible (electric)	CNP 283	85	10	95	65	-44	-15	3	38.76	
Mobile crane (50%)	EPD-09573	99	1	99	65	-44	-5	3	52.76	
Aerial work platform, working height $\leq 13m$ (50%)	BS 5228 Table C.4	92	2	95	65	-44	-15	3	38.76	
Grout pump (50%)	CNP 106	102	1	102	65	-44	-15	3	45.76	
Grout mixer (50%)	CNP 105	87	1	87	65	-44	-15	3	30.76	
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	65	-44	-15	3	48.76	
Loader, wheeled (50%)	CNP 081	109	1	109	65	-44	-15	3	52.76	
Dump Truck, 5.5 tonne < $\text{GVW} \le 38$ tonne (50%)	CNP 068	102	1	102	65	-44	-5	3	55.76	
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	65	-44	-15	3	41.76	
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	65	-44	-5	3	46.76	
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	65	-44	-15	3	46.76	
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	65	-44	-15	3	50.76	
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	65	-44	-15	3	48.76	
Ventilation fan	CNP 241	108	1	108	65	-44	-15	3	51.76	
								Total CNL	61.47	

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	65	-44	-5	3	57.76
Mobile crane (50%)	EPD-09573	99	1	99	65	-44	-5	3	52.76
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	65	-44	-5	3	53.76
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	65	-44	-5	3	44.76
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	65	-44	-5	3	55.76
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	65	-44	-5	3	43.76
								Total CNL	61.63
BOUYGUES TRAVAUX PUBLICS

Predicted Noise Level for NSR

Man Fuk House Block A (M-N4)

ſ

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	155	-52	-5	3	45.21
Air Compressor (50%)	CNP 002	99	1	99	155	-52	-5	3	45.21
Piling , vibrating hammer (50%)	CNP 172	112	1	112	155	-52	-5	3	58.21
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	155	-52	-5	3	38.21
								Total CNL	58.67

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	155	-52	-15	3	39.21
Air Compressor (50%)	CNP 002	99	1	99	155	-52	-15	3	35.21
Water Pump, submersible (electric)	CNP 283	85	10	95	155	-52	-15	3	31.21
Mobile crane (50%)	EPD-09573	99	1	99	155	-52	-5	3	45.21
Aerial work platform, working height ≤ 13m (50%)	BS 5228 Table C.4	92	2	95	155	-52	-15	3	31.21
Grout pump (50%)	CNP 106	102	1	102	155	-52	-15	3	38.21
Grout mixer (50%)	CNP 105	87	1	87	155	-52	-15	3	23.21
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	155	-52	-15	3	41.21
Loader, wheeled (50%)	CNP 081	109	1	109	155	-52	-15	3	45.21
Dump Truck, 5.5 tonne < GVW ≤ 38 tonne (50%)	CNP 068	102	1	102	155	-52	-5	3	48.21
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	155	-52	-15	3	34.21
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	155	-52	-5	3	39.21
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	155	-52	-15	3	39.21
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	155	-52	-15	3	43.21
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	155	-52	-15	3	41.21
Ventilation fan	CNP 241	108	1	108	155	-52	-15	3	44.21
								Total CNL	53.92

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	155	-52	-5	3	50.21
Mobile crane (50%)	EPD-09573	99	1	99	155	-52	-5	3	45.21
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (30%)	CNP 068	100	1	100	155	-52	-5	3	46.21
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	155	-52	-5	3	37.21
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	155	-52	-5	3	48.21
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	155	-52	-5	3	36.21
								Total CNL	54.08

BOUYGUES TRAVAUX PUBLICS

Predicted Noise Level for NSR

Cascades Block A (M-N5)

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	170	-53	-5	3	44.41
Air Compressor (50%)	CNP 002	99	1	99	170	-53	-5	3	44.41
Piling, vibrating hammer (50%)	CNP 172	112	1	112	170	-53	-5	3	57.41
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	170	-53	-5	3	37.41
								Total CNL	57.86

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	170	-53	-15	3	38.41
Air Compressor (50%)	CNP 002	99	1	99	170	-53	-15	3	34.41
Water Pump, submersible (electric)	CNP 283	85	10	95	170	-53	-15	3	30.41
Mobile crane (50%)	EPD-09573	99	1	99	170	-53	-5	3	44.41
Aerial work platform, working height ≤ 13m (50%)	BS 5228 Table C.4	92	2	95	170	-53	-15	3	30.41
Grout pump (50%)	CNP 106	102	1	102	170	-53	-15	3	37.41
Grout mixer (50%)	CNP 105	87	1	87	170	-53	-15	3	22.41
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	170	-53	-15	3	40.41
Loader, wheeled (50%)	CNP 081	109	1	109	170	-53	-15	3	44.41
Dump Truck, 5.5 tonne < GVW ≤ 38 tonne (50%)	CNP 068	102	1	102	170	-53	-5	3	47.41
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	170	-53	-15	3	33.41
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	170	-53	-5	3	38.41
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	170	-53	-15	3	38.41
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	170	-53	-15	3	42.41
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	170	-53	-15	3	40.41
Ventilation fan	CNP 241	108	1	108	170	-53	-15	3	43.41
				-				Total CNL	53.12

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	170	-53	-5	3	49.41
Mobile crane (50%)	EPD-09573	99	1	99	170	-53	-5	3	44.41
Dump Truck, 5.5 tonne < $GVW \le 38$ tonne (30%)	CNP 068	100	1	100	170	-53	-5	3	45.41
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	170	-53	-5	3	36.41
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	170	-53	-5	3	47.41
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	170	-53	-5	3	35.41
								Total CNL	53.27

BOUYGUES TRAVAUX PUBLICS

Predicted Noise Level for NSR

Ko Fai House, Kwun Fai Court (M-N6)

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	50	-42	-5	3	55.04
Air Compressor (50%)	CNP 002	99	1	99	50	-42	-5	3	55.04
Piling, vibrating hammer (50%)	CNP 172	112	1	112	50	-42	-5	3	68.04
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	50	-42	-5	3	48.04
								Total CNL	68.49

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	50	-42	-15	3	49.04
Air Compressor (50%)	CNP 002	99	1	99	50	-42	-15	3	45.04
Water Pump, submersible (electric)	CNP 283	85	10	95	50	-42	-15	3	41.04
Mobile crane (50%)	EPD-09573	99	1	99	50	-42	-5	3	55.04
Aerial work platform, working height ≤ 13m (50%)	BS 5228 Table C.4	92	2	95	50	-42	-15	3	41.04
Grout pump (50%)	CNP 106	102	1	102	50	-42	-15	3	48.04
Grout mixer (50%)	CNP 105	87	1	87	50	-42	-15	3	33.04
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	50	-42	-15	3	51.04
Loader, wheeled (50%)	CNP 081	109	1	109	50	-42	-15	3	55.04
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (50%)	CNP 068	102	1	102	50	-42	-5	3	58.04
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	50	-42	-15	3	44.04
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	50	-42	-5	3	49.04
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	50	-42	-15	3	49.04
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	50	-42	-15	3	53.04
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	50	-42	-15	3	51.04
Ventilation fan	CNP 241	108	1	108	50	-42	-15	3	54.04
		-					-	Total CNL	63.75

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	50	-42	-5	3	60.04
Mobile crane (50%)	EPD-09573	99	1	99	50	-42	-5	3	55.04
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	50	-42	-5	3	56.04
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	50	-42	-5	3	47.04
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	50	-42	-5	3	58.04
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	50	-42	-5	3	46.04
								Total CNL	63.90

Predicted Noise Level for NSR

BOUYGUES TRAVAUX PUBLICS

Ultima (M-P3)

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Ventilation Building Foundation									
Mobile crane (50%)	EPD-09573	99	1	99	115	-49	-5	3	47.80
Air Compressor (50%)	CNP 002	99	1	99	115	-49	-5	3	47.80
Piling, vibrating hammer (50%)	CNP 172	112	1	112	115	-49	-5	3	60.80
Aerial work platform, working height $\leq 13m$ (Surface) (50%)	BS 5228 Table C.4	92	1	92	115	-49	-5	3	40.80
								Total CNL	61.26

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation									
Air Blower	CNP 006	95	6	103	115	-49	-15	3	41.80
Air Compressor (50%)	CNP 002	99	1	99	115	-49	-15	3	37.80
Water Pump, submersible (electric)	CNP 283	85	10	95	115	-49	-15	3	33.80
Mobile crane (50%)	EPD-09573	99	1	99	115	-49	-5	3	47.80
Aerial work platform, working height ≤ 13m (50%)	BS 5228 Table C.4	92	2	95	115	-49	-15	3	33.80
Grout pump (50%)	CNP 106	102	1	102	115	-49	-15	3	40.80
Grout mixer (50%)	CNP 105	87	1	87	115	-49	-15	3	25.80
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	115	-49	-15	3	43.80
Loader, wheeled (50%)	CNP 081	109	1	109	115	-49	-15	3	47.80
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (50%)	CNP 068	102	1	102	115	-49	-5	3	50.80
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	115	-49	-15	3	36.80
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	115	-49	-5	3	41.80
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	115	-49	-15	3	41.80
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	115	-49	-15	3	45.80
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	115	-49	-15	3	43.80
Ventilation fan	CNP 241	108	1	108	115	-49	-15	3	46.80
	· · · · · · · · · · · · · · · · · · ·				-	-		Total CNL	56.52

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Construction of Diaphragm Wall									
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	115	-49	-5	3	52.80
Mobile crane (50%)	EPD-09573	99	1	99	115	-49	-5	3	47.80
Dump Truck, 5.5 tonne < $GVW \le 38$ tonne (30%)	CNP 068	100	1	100	115	-49	-5	3	48.80
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	115	-49	-5	3	39.80
Piling, diaphragm wall bentonite filtering plant (50%)	CNP 162	102	1	102	115	-49	-5	3	50.80
Piling, diaphragm wall, hydraulic extractor (50%)	CNP 163	87	2	90	115	-49	-5	3	38.80
								Total CNL	56.67

Annex F

Cumulative Noise Level at the NSRs

Contract No. HY/2018/08 Central Kowloon Route - Central Tunnel

Cumulative Noise Assessment																						Ca	end	ar Y	ear	/ M	ontl	h						
								20	20										202	1						2022								
NSR ID	NSRs	Sep	Oct	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	. Oct	NON	Dec	Jan Feb	Mar	Apr	Мау	Jun	INC	Sen	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	۱n۲	Sep
			Cumulative Noise Level, dB(A)																															
M-N1	Kar Man House, Oi Man Estate		58	3 <mark>5</mark> 9	59	59	59	59	59	53	53	53	53	53 5	3 5	53 5	3 53	3 53	53	53	53 5	3 5	3 <mark>56</mark>	56	56	56	56	56	56	56	56	53 5	53 5	3 53
M-N2	Carmel on the Hill		58	3 59	59	59	59	59	59	53	53	53	53	53 5	3 5	53 5	3 53	3 53	53	53	53 5	3 5	3 <mark>56</mark>	56	56	56	56	56	56	56	56	53 5	53 5	3 53
M-N3	SKH Tsoi Kung Po Secondary School		66	5 <mark>68</mark>	63	63	63	68	68	62	62	62	62	62 6	52 6	52 6	2 62	2 62	62	62	52 6	2 6	2 65	65	65	65	65	65	65	65	65	62 6	52 6	2 62
M-N4	Man Fuk House Block		59	9 60	60	60	60	60	60	54	54	54	54	54 5	54 5	54 5	4 54	1 54	54	54	54 5	4 5	4 57	' 57	57	57	57	57	57	57	57	54 5	54 5	4 54
M-N5	Cascades Block A		58	3 59	59	59	59	59	59	53	53	53	53	53 5	3 5	53 5	3 53	3 53	53	53	53 5	3 5	3 56	56	56	56	56	56	56	56	56	53 5	53 5	3 53
M-N6	Ko Fai House, Kwun Fai		69	9 70) 70	70	70	70	70	64	64	64	64	64 6	64 6	64 6	64 64	4 64	64	64	64 6	4 6	4 67	67	67	67	67	67	67	67	67	64 6	54 6	4 64
M-P3	Ultima		63	L 63	63	63	63	63	63	57	57	57	57	57 5	57 5	57 5	7 57	7 57	57	57	57 5	75	7 60	60	60	60	60	60	60	60	60	57 5	57 5	7 57
					ec 20 eriod enti id Tu)19 wit latic unne	- Ma th co on b el ex	ay 2 oncu uild ccav	020 urre ling atic	nt a fou on)	nctiv nda	vitie: Ition	5										Se Pe (T co *S	p 20 rioc unn nsti houl	021 d wi el e ruct	- Ma th co xcav ion o ere b	ay 2 oncu vatic of di	022 urre on ai iaph	nt a nd nrag	nctiv m w with	vitie vall)	s nis pe	eriod	, the

									20	23					
255	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
3	53	53	53	53	53										
3	53	53	53	53	53										
2	62	62	62	62	62										
4	54	54	54	54	54										
3	53	53	53	53	53										
4	64	64	64	64	64										
7	57	57	57	57	57										
	Examinatioin Period														
				Per	iod	wit	h cc	ncu	irre	nt s	ite a	activ	/itie	S	
n	naxi	Period with concurrent site activities maximum cumulative noise level = 64 6dB(A)													

Annex G

Details of Acoustic Materials for Construction of Noise Enclosure

- "Eastland" AAC Noise panel
- "NAP" Noise panel (SD 150RW)
- "Kinetics" Acoustic Sliding Door
- "MYG" Silencer and Man-access Lobby House

What is AAC Panel & Block

AAC Panel is the shortened form of Autoclaved Aerated Concrete Panel. The main materials of AAC panel are silicon sand, cement, lime etc. Reinforced with anti-stain processed steel bar, the concrete panel with many air holes was formed after high-temperature, high-pressure protection with steam. It's a new type constructional material with excellent functions. There are patents of Germany and Sweden and Japan included in the production equipments. The complete production process, from mixing raw material, anti-stain processing of steel bar, organizing into frame, pouring paste on, cutting, steaming and pressing to surface processing, is calculated accurately with computer program and has a rigid QC control.

AAC Block is the shortened form of Autoclaved Aerated Concrete Block. The difference of the AAC block from the AAC panel are: 1) no reinforced steel inside 2) sizes are smaller than AAC panel

Catalog of AAC Noise Panel

The Application Scope of AAC

- AAC panels have been used in many cities through China, such as Guangzhou, Shanghai, Ningbo, Suzhou, Wuxi, and Australia, New Zealand, Japan, Middle-East, Europe, USA, South-East Asia etc.
- AAC panels have been used various kinds of buildings, such as public facilities, industrial constructions, civil housing, hospital, hotel, schools, stores, supermarkets etc. The construction structures it suits also expand from concrete frame structure, steel frame structure, to other structures.
- The existing products range from interior partition wall panels to exterior walls, ornamental wall panels, floor, roofing and cladding.

Changzhou, Tianjin, Beijing, Qingdao, Dalian, etc. The products are also regularly exported to other countries, such as

The Product Range of AAC

Standard AAC Panels

- AAC External Wall Panel
- AAC Partition Wall Panel
- AAC Flooring Slab
- AAC Roofing Slab
- AAC Wall Cladding
- AAC Fencing Panel

Standard AAC Blocks

- AAC External Wall Block
- AAC Internal Wall Block

The Test Result of AAC

Character	istics	Unit	Test Value	Criterion	Value of Criterion	
			Grade 04: 412	(analysis)	≤425	
Dry Dens	sity	Kg/m3	Grade 05: 503	GB/T11970	≤525	
			Grade 06: 608	-1997	≤625	
			Grade 04: 2.4	1	≥2.0	
	Average		Grade 05: 4.0	0.5/5/10.5/	≥3.5	
Compressive Strength		Мра	Grade 06: 5.3	GB/1119/1	≥5.0	
	Minimum		Grade 04: 2.2	-1997	≥1.6	
			Grade 05: 3.7]	≥2.8	
			Grade 06: 4.9		≥4.0	
Dry Shrinks			Grade 04/05: 0.66	GB/T11972	≤0.8	
bry ommindge		mman	Grade 06: 0.65	-1997		
	Quality Leat	0/	Grade 04: 0.7		CE 0	
Frozen Resistanc	Quanty Lost	%	Grade 05/06: 1.0	CP/T11073	≤0.0	
	Strongth		Grade 04: 2.0	-1997	≥1.6	
	After Frozen	Mpa	Grade 05: 3.6		≥2.8	
	Alter Mozen		Grade 06: 4.8		≥4.0	
Thermal Conductivity			Grade 04: 0.11	The Contract of	≤0.12	
		W/(m.k)	Grade 05: 0.13	GB/T10295	≤0.14	
			Grade 06: 0.15	-88	≤0.16	
	120mm thick	dB	40.5 (render)			
	150mm thick	dB	40.5 (no render)	11		
	150mm thick	dB	41.5 (render)	GBJ75-84		
Sound	200mm thick	dB	44.5 (no render)	GB/T50121		
Insulation	200mm thick	dB	45 (render)	-2005		
	240mm thick	dB	47.5 (no render)]		
	240mm thick	dB	48.5 (render)			
	240mm thick	dB	51 (complex)			
Infiltration Re (6 days, fallin	sistance g in water)	mm	88.2	JISA 54160 -1997	≤100	
Fire Resistand (100mm thick)	ce	hour	≥4.0	GB/T9978 -1999	1. ≥4.0 2. ≥3.0	
Modulus of El	asticity	N/mm2	1800			
Water Absorpt	tion	°/vol	Totally underwater: 36 Partly underwater: 30			
Expansion Co	efficient	/1	7.0 x 10-6	1.2.4		

Acoustic Test Report for "Eastland" AAC Noise Panel

Intertek Testing Services Shenzhen Ltd. Shanghai Fengxian Branch Plant 5, No. 6958 Daye Road, Fengxian District, Shanghai, China Tel: 021-61136116 Fax: 021-61189921 Website: www.intertek.com

Test Report

Issue Date:	2019-12-03	Intertek Report No.	191126017SHF-001				
Applicant:	Dragages Hong Kong Limited						
Address:	3/F, Island Place Tower, 510 King'	s Road, North Point, Hong Kong					
Attn:	Elly SUN						
Manufacturer:	Eastland International Limited	Eastland International Limited					
Address:	2404, Building 4, No. 37 Pukou Av	enue, Nanjing, China					
Test Type :	Performance test, samples provid	ed by the applicant.					

Product Information

Product Name		Noise Panel	Brand	1		
Sample		Courd Courdiaises	Sample Amount	10 PCS		
Description		Good Condition	Received Date	2019-11-26		
Sam	pie ID	Model	Specif	ecification		
\$1911260175HF.001		1	3m x 0.6m x 0.12m noise panel + Thick Rockwool			

Test Methods And Standards

Test Standard	ISO 10140-2:2010
Specification Standard	ISO 717-1:2013
Test Conclusion	The samples were tested according to the above standards, and the results are shown in the following page.

Note:

 This report relates specifically to the sample(s) that were drawn and provided by the applicant or their nominated third party. The reported result(s) provide no warranty or verification on the sample(s) representing any specific goods and/or shipment and only relate to the sample(s) as received and tested.

Report Authorized

Z Jodie Zhou

Name: Jodie Zho Title: Reviewer Name: Mason Wang Title: Project Engineer

验检测专用》

Test Report

Issue Date:	2019-12-03		Intertek Report No.	191126017SHF-001		
Test Items, Method and	Results:					
Test method: ISO 10140-2	2010					
Temperature:	16.5	°C	Relative Humidity:	80	%	
Volume of the source roo	m: 112	m³	Volume of the receiving room:	137	m³	
Specimen area:	12.6	m ²				

Frequency (Hz)	Sound Reduction Index, Ri (dB)	
100	32.0	
125	32.0	
160	31.9	
200	33.1	
250	31.6	
315	34.9	
400	36.7	
500	38.3	
630	43.3	
800	47.0	
1000	51.4	
1250	54.4	
1600	55.8	
2000	57.5	
2500	60.3	
3150	63.4	
4000	65.8	
5000	68.5	

Rating according to ISO 717-1:2013

Weighted Sound reduction index	Rw(C;Ctr)=	45(-2;-5)	dB	
Spectrum A-weighted pink noise	C=	-2	dB	
Spectrum A-weighted urban traffic noise	Ctr=	-5	dB	

Note:

1. Evaluation based on laboratory measurement results obtained by an engineer method.

2. The detailed sample installation drawing in Appendix A was provided by the applicant.

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

Far East) Ltd.
Hong Kong Plaza, Road West,

Laboratory Measurement Report for Airborne Sound Insulation to ISO 10140-2 for SNAPAcoustics Noise Barrier Panels model SD150RW

Page 1 of 11

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

NOTES

- 1. This report will be invalid if:
 - 1) Without SNAP Laboratory's seals.
 - 2) Without signatures of analysts, verified and approved by SNAP Laboratory.
 - 3) Partially reproduced without the written approval of SNAP Laboratory.
 - 4) Altered.
- 2. SNAP Laboratory will be responsible for the samples tested only.
- Contact SNAP Laboratory should you have any questions and inquiries about this report within two weeks after received it.

地址: 广东省惠州市惠阳区秋长镇枯园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-380680 传真: 0752-3919311 Ulfu (E-mail):reslab@supnap.com 网址(http):www.supremeacoustics.com

Page 2 of 11

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

TESTING CNAS L8117

CONTENTS

- 1.0 Introduction
- 2.0 Date & Time
- 3.0 Environmental conditions
- 4.0 Test Conducted By
- 5.0 Reference Standards
- 6.0 Description of the test specimen
- 7.0 Instrumentation
- 8.0 Measurement Procedures
- 9.0 Results
- 10.0 Appendix

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

Page 3 of 11

1.0 Introduction

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory was invited by NAP Acoustics (Far East) Ltd. to determine room-to-room airborne sound insulation of SNAPAcoustics Noise Barrier Panels model SD150RW in accordance with ISO 10140-2:2010.

The test specimen was installed at the test aperture between two Reverberation Rooms at No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China. The volume of the source room named Saturn and the receiving room named Uranus were 127 m^3 and 90.6 m^3 respectively. The structural opening dimensions of the test aperture between two rooms was 4,130 (W) x 3,280 (H) mm.

2.0 Date & Time

12. 20

\$

Sample was received on 30 June 2020. Test was conducted from 16:00 to 17:30 on 10 July 2020.

3.0 Environmental Conditions

	Source room	Receiving room
温度 Temperature	31.7 deg. C	31.6 deg. C
湿度 Relative humidity	63 %	65 %

4.0 Test Conducted By

Ms. Fanni Lin	Test Engineer
Mr. Amber Lin	Test Engineer

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

5.0 Reference Standards

- "ISO 10140-2:2010 Acoustics Laboratory measurement of sound insulation of building elements Part 2: Measurement of airborne sound insulation "
- "ISO 3382-2:2008 Acoustics Measurement of room acoustic parameters Part 2: Reverberation time in ordinary rooms"
- "ISO 717-1:2013 Acoustics Rating of sound insulation in buildings and of building elements Part 1: Airborne sound insulation"

6.0 Description of the test specimen

- 6.1 The test specimen was said to be SNAPAcoustics Noise Barrier Panels model SD150RW in thickness of 150 mm. The solid outer shell of the panel was made of 0.8 mm galvanized steel sheet with calcium silicate board in density of 1550 kg/m³ as damping materials. The sound absorption face was made of 0.5 mm thick galvanized steel sheet having perforation of 23 %. The panels were filled with 60 kg/m³ rock wool and covered with black fiberglass tissue.
- 6.2 The test specimen consisted of 7 pieces of the said Noise Barrier Panels in size of 3,200 mm (L) x 565 mm (W). The panels were installed into the test aperture which joined together to form an overall size of 12.7 m².
- 6.3 Photograph of the test specimen installed for testing was given in Appendix 10.

 地址:
 广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:
 (Tel):0752-3806880

 传真:
 0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

7.0 Instrumentation

The instrumentation used for the measurement was as follows:

- 7.1 Norsonic Type 150 Dual-Channel Investigator complying with IEC 61672-1 (Class 1) / ANSI S1.43-1997 (Type 1), with 1/3 octave bands filter complying with IEC 61260 / ANSI S1.11-2004 Class 0 / ANSI S1.11-1986, Order 3, Type 0-C, for sound pressure levels measurements. Microphone extension cables, and internal sound source were used during the measurements.
- 7.2 Omni Power Sound Source Type Nor 276 and power amplifier Nor 280.
- 7.3 Bruel & Kjaer Sound Level Calibrator Type 4231, complying with IEC 60942.

8.0 <u>Measurement Procedure</u>

- 8.1 Calibration checks were carried out on the Sound Measuring Instrument with the Sound Level Calibrator, before and after the measurements. The difference in the calibration value before and after measurements should be no more than 0.5 dB.
- A、15-2011日日日日
- 8.2 White Noise was generated in the source room so that the transmitted sound level in the receiving room was at least 6 dB above the background noise level at all frequencies. Source and microphone positions were chosen according to ISO 10140-2:2010. Measurements were taken for three source positions, with six microphone positions in the source and receiving room respectively. The Level Difference $D = L_{p1} L_{p2}$ as per defined in ISO 10140-2:2010 was then calculated.
- 8.3 For the purpose of estimating the Sound Reduction Index *R*, the reverberation time in the receiving room was measured according to ISO 3382-2, choosing two loudspeaker positions and six microphone positions.

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:(Tel):0752-3806880
 传真:0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

「日田公」

69

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

8.4 The Sound Reduction Index R was calculated according to ISO 10140-2:2010 as: $R = L_{p1} - L_{p2} + 10\log(S/A)$

where

- L_{p1} is the average sound pressure level in the source room, in decibels;
- is the average sound pressure level in the receiving room, in decibels; L_{p2}
- Sis the area of the test specimen, in square meters;
- A is the equivalent sound absorption area in the receiving room, in square meters.
- 8.5 The Weighted Sound Reduction Index R_w was determined from the value of R in 1/3 octave bands with centre frequencies from 100 Hz to 3,150 Hz, following the procedure given in ISO 717-1:2013.

Note: Rw is a single-number values intended to give rating of airborne sound insulation in view to compare the performance of different systems.

9.0 Results

9.1 Calibration checks were carried out on the sound level meter before and after the measurements. The results were recorded below:

Sound level meter	Nor 150 (Channel 1)	Nor 150 (Channel 2)
Calibrator Reference	94.0 dB	94.0 dB
Before Measurement	94.0 dB	94.0 dB
After Measurement	94.0 dB	94.0 dB
Drift	0 dB	0 dB

地址: 广东省惠州市惠阳区秋长镇桔园路56号

Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮(E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

Page 7 of 11

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

9.2 The Sound Reduction Index of SNAPAcoustics Noise Barrier Panels model SD150RW was determined in accordance with ISO 10140-2:2010 to achieve the following values:

1/3 Octave Band Centre Frequency (Hz)	Sound Reduction Index R (dB)	1/1 Octave Band Frequency Sound Reduction Index <i>R</i> (dB)			
50	19.8				
63	22.1	20.9			
80	21.2				
100	28.8				
125	32.6	31.3			
160	34.3				
200	37.6				
250	41.3	40.2			
315	44.0	~			
400	46.6				
500	47.3	47.6			
630	49.3	1			
800	50.0				
1000	53.8	52.8			
1250	58.2				
1600	60.2				
2000	61.7	61.8			
2500	64.7	1			
3150	66.4				
4000	68.3	67.7			
5000	68.7	-			
6300	67.8				
8000	66.3	57.8			
10000	53.4				
Weighted Sound Reduction Index R _w	$R_{\rm w}\left(C;C_{ m tr} ight)$ =	= 51 (-2;-7)			
(ISO 717-1:2013)	Sum of unfavourable deviations: 31.4 dB				

地址:广东省惠州市惠阳区秋长镇桔园路56号

Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail) :reslab@supnap.com 网址 (http):www.supremeacoustics.com

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

9.3 The following graph shows the Sound Reduction Index of SNAPAcoustics Noise Barrier Panels model SD150RW plotted against frequency (dotted line) and the shifted reference curve (solid line), the bars show the values of the unfavourable deviations for each frequency band.

Figure 1: Sound Reduction Index *R*, reference curve for $R_w = 51 \text{ dB}$ For SNAPAcoustics Noise Barrier Panels model SD150RW

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

10.0 Appendix

10.1 Photograph of the test specimen installed for testing.

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:(Tel):0752-3806880
 传真:0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

Page 9 of 11

Page 10 of 11

Acoustic Test Report for "Kinetics" Sliding Door

Be it ELECTRIC or MANUAL operation, AEC offers a wide range of panel constructions and tracks designed to fit your specific need and budget. For life-of-the-building durability select one of the ALPHA[®] panel constructions.

	Panel Type	Weight #/SQ. FT	Weight KG/M2	S.T.C	N.I.C.*	N.R.C.	Panel Thickness	Maximum Width	Maximum Height	Panel Face Sheet
	5	8.5	41.6	53	42		3.5*(89mm)	60"(1.52M)	35FT (10.7M)	16-Ga. Steel or optional 14-Ga.
	т	9,1	44.5	54	42		3.5*(89mm)	60*(1.52M)	35IFT (10,7M)	Minimum 16-Ga. Steel
ha	U	9.7	47.5	53	42		4* (102mm)	60*(1.52M)	60FT (18.3M)	14-Ga. Steel
Alp	P	12	58.7	49	42	0.65	4*(102mm)	60"(1.52M)	60IFT (18.3M)	14-Ga. Perforated Steel
-	X	10	48.9	53	42	- S.	3.5"(89mm)	60"(1.52M)	35/FT (10.7M)	14 or 16-Ga. Steel (1-Hr fire)
12	A	5.9	28.9	49	40	- 78	3.5" (89mm)	54"(1.37M)	24FT (7.3M)	Minimum 20-Ga. Steel
ma	в	6.4	31.3	50	41	(A. 11)	3.5" (89mm)	54"(1.37M)	24FT (7.3M)	Minimum 20-Ga. Steel
- Dig	C	6.9	33.8	51	41	- 22	3.5" (89mm)	54"(1.37M)	35 FT (10.7M)	Minimum 18-Ga. Steel
	D	7.A.	36.2	52	42		3.5"(89mm)	54"(1.37M)	35 FT (10.7M)	Minimum 18-Ga. Steel
			V		2 <u></u>			w		
	NJ.C.* when te	sted in accord	ance with AST	M E 336-97;1	Deduct 2 point	is when using	ASTM E 336-05	a la servición de la servición		
	With the excep	tion of "X" (fire	rated), all ALP	HA and SIGN	/A panels are	suitable for el	ectric operation			
	With the excep	tion of 'X" (fire	rated), all ALP	HA and SIGM	A panel cons	tructions are	available as curved	d panels		
	ALPHA & SIGM	A panels are o	ne-piece steel	weldments	with (ace shee	ts welded to l	tame			
	Maximum heig	hts are for ind	ividual panel o	operation an	d may be less l	for hinged gr	oups or electric op	eration		

Advanced Equipment's family of extended warranty tracks produce easy, reliable, long term service with virtually no maintenance. These tracks are furnished with a 5 or 10-year warranty period that does not exclude normal wear and tear. Specify tracks #1a, #8 or #8b.

81a 900-pound trolley capacity Composite tradic Alaminum cale with CR issel bar running surface: Mounual or electric operation 5-YEAR WARRANTY

#1 800-pound trolley capacity Composite trols Alaminum pilos track incorporating softs nim, Manual confective operation. 2-YEAR WARRANTY

48 1700-pound trolley capacity Camposite track Aurrierum cate with CEsteel bar running surface. Menual or electric operation 10-YEAR WARRANTY

Composite track: Auminum case with steel runn surface. Manual operation 2.YEARWARRANTY

88b 1500-pound trolley capacity Compose track Aluminum case with CR steel bar surving surface. Manual or electric operation. 10-YEAR WARRANTY

DWspec[™] provides Architects and Specification Developers with a fully interactive tool for developing operable wall specifications. As a Web-based application, DWspec requires no special software or downloads. DWspec produces one specification for your project even if your project has several walls each with differing characteristics. The user need not be familiar with Advanced Equipment products or their individual characteristics in order to produce a valid, error-free specification. www.advancedequipment.com Operable Wall Specifications as easy as 1,2,3...

REFERENCE: WESTERN ELECTRO-ACOUSTIC LABORATORY, INC. REPORT #94-227

DESCRIPTION

THE TEST SPECIMEN WAS A FULLY OPERABLE ADVANCED EQUIPMENT CORPORATION TYPE "U" PANEL CONSTRUCTION IN A 14' X 9' TEST OPENING.

PROCEDURE

THE PROCEDURES FOR THIS TEST CONFORM TO THE PROVISION AND REQUIREMENTS OF A.S.T.M. E90-85, STANDARD METHOD FOR LABORATORY MEASUREMENT OF AIRBORNE SOUND TRANSMISSION LOSS OF BUILDING PARTITIONS.

RESULTS

THE SOUND TRANSMISSION CLASS RATING DETERMINED IN ACCORDANCE WITH A.S.T.M. E-413 WAS: STC 53

1/3 OCT BND CNTR FREQ TL IN DB 95% CONFIDENCE IN dB DEFICIENCIES	125 34 1.80	160 37 2.64	200 41 1.48	250 44 0.69	315 45 1.55	400 47 1.03	500 50 0.90	630 52 0.91	800 54 0.89
1/3 OCT BND CNTR FREQ TL IN DB 95% CONFIDENCE IN dB DEFICIENCIES	1000 55 .064	1250 57 0.75	1600 59 1.19	2000 59 1.88	2500 56 1.76	3150 57 2.28	4000 56 2.55	5000 57 2.32	sтс 53

SPECIMEN AREA: 114.75 SQ. FT. TEMPERATURE: 70.6 DEG. F RELATIVE HUMIDITY: 46 % TEST DATE: JULY 16, 1995

MANYA STEEL PRODUCTS MANUFACTORY

RECTANGULAR SILENCER

INTRODUCTION

We often hear the noise from ventilation or heating systems that is hardly noticeable because it has no prominent features. The "MYG" rectangular silencer Model: MV series are mainly used in air flow intake, discharge and HVAC Ductwork systems. These silencers are offered in standard dimensions, which can be readily mounted onto the existing duct, combined with an easy calculation and selection method as well as be flexible to suit the client's particular requirements.

Rectangle G.I. Silencer

MATERIALS AND CONSTRUCTION

Standard MYG MV series come with high quality materials, compact construction and assembled with "Pittsburg seam" with natural galvanized finish on the outer case. Both the outer and inter skins shall be made of pregalvanized steel sheets and perforated steel sheets respectively. The weld affected areas and angle frames (optional) are to be protected with cold galvanizing paint finish or corrosion-resistant paint finish. Acoustic in fill using with inorganic glass fiber absorbent material with sufficient density functions to give the optimal intended performance.

MYG MV Series Rectangular Silencer

Specification of Standard Model

	MYG Silencer MV Series
Materials	Model: MV
Thickness of outer casing steel sheets	0.8 to 1.2mm
Thickness of inner perforated steel sheets	0.5mm
Acoustic infill density	32kg/m ³

*Others standard and materials are available base on customer request.

MANYA STEEL PRODUCTS MANUFACTORY

APPLICATIONS

A wide variety of industrial applications can be considered when using "MYG" acoustic silencer for the control of airborne and duct-borne noise associated with common HVAC airflow systems. The use of silencers is to minimize the fan and blower noise at both the side inlets and outlets of the equipment. Commercial acoustic silencers are engineered to achieve a maximum insertion loss with a minimum pressure drop. Normally silencers are their type and applications as follows.

- Air Discharge / Intake
- Duct Silencer
- Cross Talk Silencer
- Air Flow Splitter

ENGINEERING DATA

Static Loss (Pressure Drop)

Determine pressure drop across silencer by the following formula:

Pressure drop, $\Delta P = PD \times V^2(Pa)$

Where PD Value = Pressure loss coefficient

V = Face velocity in m/s (cross sectional size)

Standard Elbows

Special Shaped Elbows

Special Bend Elbows

Packless Silencer

				OCTA	/E BAN	D CENT	RE FR	EQUEN	CY (Hz)
Model	<u>Length</u>	<u>PD</u> Value	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVL2	600	0.48	2	4	9	12	19	19	11	4
MVL3	900	0.52	2	5	10	17	21	21	13	5
MVL4	1200	0.69	3	6	13	22	28	28	16	7
MVL5	1500	1.03	4	8	15	28	35	35	21	11
MVL6	1800	1.32	5	9	19	33	42	42	25	14
MVL7	2100	1.88	6	11	22	39	49	49	29	20
MVL8	2400	2.55	7	13	25	45	50	50	44	24
MVL9	2700	3.42	9	15	27	47	50	50	46	29

Insertion Loss of "MV" L-series, dB Low Pressure (Airway 45%)

MANYA STEEL PRODUCTS MANUFACTORY

Insertion Loss of "MV" S-series, dB Medium Pressure (Airway 33%)

				OCTAV	E BANI	O CENT	RE FRE	QUENC	CY (Hz)	
<u>Model</u>	Length	<u>FD value</u>	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVS2	600	0.74	4	8	14	20	31	30	24	18
MVS3	900	0.92	5	10	18	27	34	36	30	21
MVS4	1200	1.72	6	14	24	37	46	46	40	26
MVS5	1500	2.3	8	18	27	42	50	50	46	31
MVS6	1800	3.1	9	19	34	50	50	50	50	39
MVS7	2100	4.4	11	23	40	50	50	50	50	49
MVS8	2400	6.4	13	25	45	50	50	50	50	50
MVS9	2700	8.7	14	27	48	50	50	50	50	50

Length of each ventilation silencer = 2 x 1500mm

Insertion Loss of "MV" H-series, dB High Pressure (Airway 22%)

		DD		OCTAV	E BANE	CENT	RE FRE	QUENC	Y (Hz)	
Model	<u>Length</u>	<u>PD</u> Value	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVH2	600	2.3	6	10	16	26	30	30	26	22
MVH3	900	3.4	9	16	24	37	48	50	50	39
MVH4	1200	5.1	11	21	31	49	50	50	50	46
MVH5	1500	8.1	14	25	39	50	50	50	50	50
MVH6	1800	12.1	16	29	46	50	50	50	50	50
MVH7	2100	16.5	18	33	50	50	50	50	50	50
MVH8	2400	21	20	37	50	50	50	50	50	50
MVH9	2700	23	22	39	50	50	50	50	50	50

DOUBLE DOOR LOBBY HOUSE BY MARION ACOUSTICS STC50 Acoustic Panel

PROJECT:			
TITLE:			
PRE-FABRICATED	ACOUST	TIC LOBBY HOUSE	
DRAWN:	CAD	DATE:	
CHECKED:	CAD	SCALE:	N.T.S.
DWG. NO.			

WALL PANEL BY STC50 (100mm THICKNESS) CEILING PANEL BY STC50 (100mm THICKNESS) 2 ACOUSTIC DOORS WITH AIR TIGHT HANDSET OVERALL SIZE: 2000L X 1050W X 2100H

Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

PROJECT PLAN

CONSTRUCTION NOISE MITIGATION MEASURES PLAN

(Yau Ma Tei Shaft Worksite)

TABLE OF CONTENT

Page

1.	INTRODUCTION	3
2.	CONSTRUCTION WORKS / ACTIVITIES OF THE PROJECT	5
3.	ASSESSMENT CRITERIA AND METHODOLOGY	7
4.	NOISE SENSITIVE RECEIVERS	8
5.	ASSESSMENT OF CONSTRUCTION NOISE IMPACT	9
6.	CONCLUSION	11

TABLES

Table 1	Summary of PMEs Proposed for Construction Works
Table 2	Daytime Construction Noise Criteria
Table 3	Summary of Mitigated Noise Level Predicted at the Identified NSRs in the EIA Report
Table 4	Summary of PME with Proposed Mitigation Measures
Table 5	Summary of Cumulative Noise Levels at the NSRs (Mitigated)
Table 6	Updated Mitigated Construction Noise Impact at the Identified NSRs

ANNEX

Tei Access Shaft Site
loise Enclosure

1. INTRODUCTION

1.1 Project Description

- 1.1.1 Following the completion of Yau Ma Tei Access Shaft (YMTS) by the Contractor of HY/2014/08, part of the CKR-YMTE construction site was taken over by Bouygues Travaux Publics (BYTP). BYTP was commissioned by the Highway Department of the HKSAR as the Main Contractor for the Contract HY/2018/08. This Construction Noise Mitigation Measure Plan (CNMMP) is prepared with reference to the approved CNMMP for CKR-YMTE under the CKR Contract.
- 1.1.2 Highways Department (HyD) commissioned the Design and Construction Assignment for the Central Kowloon Route in Jun 1998. CKR is a duel 3-lane trunk road across central Kowloon linking the West Kowloon in the west and the proposed Kai Tak Development (KTD) in the east. The CKR will be about 4.7km long with an underground tunnel section of about 3.9km long there will be an underwater tunnel of about 370m long in Kowloon Bay to the north of the To Kwa Wan Typhoon Shelter. It will connect the West Kowloon Highway at Yau Ma Tei Interchange with the road network at Kowloon Bay and the future Trunk Road T2 at KTD which will connect to the future Tseung Kwan O Lam Tin Tunnel (TKO-LTT) and Cross Bay Link (CBL). CKR, Trunk Road T2 and TKO-LTT will form a strategic highway link, namely Route 6, connecting West Kowloon and Tseung Kwan O. Consultancy studies for Trunk Road T2, TKO-LTT and CBL have been commissioned by CEDD. In addition, 3 ventilation buildings, which will be in Yau Ma Tei, Ho Man Tin and ex-Kai Tak airport area, are proposed to ensure acceptable air quality within the tunnel.
- 1.1.3 The Central Kowloon Route Design and Construction Environmental Impact Assessment Report (Register No.: AEIAR-171/2013) was approved with conditions by the Environmental Protection Department (EPD) on 11 July 2013. An Environmental Permit (EP) (No. EP-457/2013) was issued on 9 Aug 2013. Variations of EP (VEP) was subsequently applied for and the latest EP (EP-457/2013/C) was issued by EPD on 16 Jan 2017.
- 1.1.4 The activities planned for the YMTS construction site under the EP include:
 - Tunnel excavation (Tunneling & enlargement);
 - Cut and cover tunnel.

The overall layout plan of Central Tunnel and YMTS are enclosed in Annex A.

- 1.1.5 Condition 2.9 of the EP No. EP-457/2013/C stipulated that to further reduce the air-borne construction noise impacts on the NSRs: Tak Cheong Building, Prosperous Garden Block 1, and The Coronation Tower 1, the Permit Holder shall prepare the CNMMP to the Director of EPD for approval. The plan shall include:
 - (a) A schedule of construction works to be carried out at the works areas of the Project within 300m from the NSRs defined by EP;
 - (b) An updated construction methodology of the construction works;
 - (c) An updated Power Mechanical Equipment (PME) list for the construction works;
 - (d) An updated proposal of air-borne construction noise mitigation measures for the identified NSR as mentioned above, including the provision of noise barriers, enclosures;

- (e) Other activities proposed by the Permit Holder; and
- (f) An updated prediction of noise levels in accordance with the above updated information and mitigation proposals in place.
- 1.1.6 The CNMMP will be reviewed upon the proposed change of construction methods or materials. The updated PME listed in Table 1 represented the worst-case scenario which is practicable for completing the works required by the Contract within the scheduled timeframe.

2. CONSTRUCTION WORKS / ACTIVITIES OF THE PROJECT

- 2.1. The programme for the construction works described in above Section 1.1.5 are presented in Annex B.
- 2.2. The proposed construction works will generally follow the methodologies recommended in Chapter 3 of the approved EIA report. Drill and Blast methodology will be adopted for the construction of the central tunnel.
- 2.3. Application of electronic detonator will be adopted for blasting in certain tunnel sections. Electronic detonator was widely used in other tunnel projects in Hong Kong (HATS, WIL, XRL and TKO-LTT). Comparing to the traditional shock tube detonator system, qualitative review revealed that the improved design of electronic detonator can (1) eliminate the likelihood of failure caused by human errors and (2) provide a reliable control of ground vibration thus less ground-borne noise disturbance to the public is anticipated.
- 2.4. A summary of PME proposed for the construction works is shown in Table 1. The respective Sound Power Level (SWL) of the PME can be obtained from:
 - 1) EPD's Technical Memorandum on Noise from Construction Work Other than Percussive Pilling.
 - 2) List of SWLs of other commonly used PME or
 - 3) British Standard 5228 Part 1:2009 Code of Practice for Noise and Vibration Control on Construction and Open Sites.

As recommended in the EIA report, quiet equipment and adjustment in utilization rates should be adopted according to Appendix 5.4 of the EIA report to minimize the noise impact to the NSRs. Extra PME have been proposed to take account the latest construction programme and PME inventory in addition to the quiet PME proposed in the EIA report.

PME (% Operation)	Reference	SWL, dB(A)*
Air blower (100%)	CNP 006	95
Air Compressor (50%)	CNP 002	99
Water Pump, submersible (electric) (100%)	CNP 283	85
Aerial work platform, working height $\leq 13m$ (50%)	BS5228 Table C.4/57	92
Grout mixer (50%)	CNP 105	87
Grout pump (50%)	CNP 106	102
Concrete Mixer (50%)	CNP 045	93
Concrete Lorry Mixer (30%)	CNP 044	104
Shotcreting machine (50%)	BS5228 Table D.6/13	105
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100
Light good vehicle < 5.5 tonne (50%)	CNP 143	98
Loader, wheeled (50%)	CNP 081	109
Ventilation fan (100%)	CNP 241	108
Excavator, tracked (50%)	EPD-07059	103
Breaker, excavator mounted (hydraulic) (50%)	BS5228 Table D.8/13	107
Rock drill, (hydraulic) (50%)	SIL EIA#	105

 Table 1: Summary of PMEs proposed for construction works

Construction Noise Mitigation Measure Plan (YMTS worksite)

PME (% Operation)	Reference	SWL, dB(A)*
Mobile crane (50%)	EPD-09573	99

* Noise data refers to the Quiet Plant in Appendix 5.4 and Appendix 5.6a of the CKR EIA report.

Sound Power Level refers to EPD website (Sound Power Level of other commonly used PME)

BS5228 – Code of practice for noise and vibration control on construction and open sites, and the Technical Memorandum on Noise from Construction Work Other than Percussive Piling (GW-TM) under the Noise Control Ordinance.

** Series of this kind of PME with same or lower SWL will be adopted.

Reference to Approved South Island Line (East) EIA

3. ASSESSMENT CRITERIA AND METHODOLOGY

3.1 Assessment Criteria

3.1.1 Noise impacts arising from the construction works at YMT are assessed in accordance with the criteria given in the Technical Memoranda under the Noise Control Ordinance (NCO), and the Technical Memorandum on Environmental Impact Assessment. The daytime construction noise criteria are listed in Table 2.

Table 2: Daytime construction noise criteria

Use	Acceptable Noise Level in Leq (30-min), dB(A)
Residential	75

3.2 Assessment Methodology

- 3.2.1 Construction noise assessment was carried out according to the methodology adopted in the EIA report. The utilization rate for each PME was estimated individually for the corresponding activity to ensure it is practical and consistent with the assumptions made in the EIA report.
- 3.2.2 BYTP confirmed that the programme and plant inventory are reasonable and practicable allowing the completion of works within the schedule timeframe.
- 3.2.3 All mitigation measures and their effectiveness evaluated in the EIA report including adoption of quiet PME, percentage on-time for each PME, movable noise barrier and noise enclosure for the PME were considered in this CNMMP. Details of acoustic materials to construct the noise enclosure are enclosed in Annex G.
- 3.2.4 To predict the noise level, PMEs are divided into groups required for each respective construction task. The purpose is to identify the worst-case scenario representing those PME that will be in use concurrently at any time. The total Sound Pressure Level (SPL) of each construction task at the identified NSR is calculated, according to the Sound Power Level (SWL) of each PME and the distance attenuation to the NSRs. If more than one construction task will be carried out concurrently, the total SPL is predicted by adding up all SPL of concurrent construction tasks in logarithmic scale.
- 3.2.5 Tunnelling works will involve alternating cycles from drilling to mucking out. Therefore, tunnel excavation activities will be operated in sequence rather than concurrently. The relevant noise calculation is conducted in groups accordingly.
- 3.2.6 A positive 3dB(A) façade correction is added to the predicted noise level to account for the façade effect at the NSR.

4. NOISE SENSITIVE RECEIVERS

4.1 According to Condition 2.9 of the EP, Yau Ma Tei Catholic Primary School (Hoi Wang Road), Tak Cheong Building, Prosperous Garden Block 1, and The Coronation Tower 1 (West Façade) were identified as a representative NSR for the assessment. The predicted noise levels at the identified NSRs are summarized in Table 3. Since Yau Ma Tei Catholic Primary School (Hoi Wang Road) is > 300m away from the YMTS construction site, the corresponding noise assessment will not be considered in this CNMMP.

Table 3:	Summary of Mitigated	Noise Level Predicted at the	Identified NSRs in EIA Rep	oort
			1	

NSR ID	NSR Description	Uses [1]	Criterion dB(A)	Max. Mitigated Noise Level, dB(A) ^[2]	Exceedance, dB(A) ^[2]
W-N8A	Tak Cheong Building	R	75	82	7
W-N25A	Prosperous Garden Block 1	R	75	81	6
W-P11	The Coronation Tower 1 (West	R	75	77	2
	Façade)				

[1] R- Residential

[2] Bolded values mean exceedance of the relevant noise criteria.

4.2 The locations of identified NSRs are shown in Figure 1:

Figure 1: Location plan of identified NSRs

Photos of identified NSRs are presented in Annex C

5. ASSESSMENT OF CONSTRUCTION NOISE IMPACT

5.1. Mitigation Measures

- 5.1.1. The mitigation measures proposed in the EIA report will be adopted, i.e. Erection of movable barrier and noise enclosure. PME with adopted mitigation measures are summarized in Table 4.
- 5.1.2. Noise reduction of 5dB(A) is proposed for the movable barrier for the PME operating at surface.
- 5.1.3. All PME for tunnel excavation shall be operated at the shaft bottom (>35m below the ground level) with a noise enclosure covering the shaft. In this case, the barrier effect proposed for the PME operating inside the shaft is 20dB(A).
- 5.1.4. Shaft covers were constructed for the PME operating inside access shaft. The noise cover is made of 400mm thick concrete slab. A 14m x 8m opening is remained for daytime operation, which will be closed by a removable cover during restricted hours. The removable cover is made of 155mm thick proprietary noise panel (STC50), including 5mm thick steel sheet outer layer and 2mm thick steel sheet inner layer sandwiching 24mm thick stone board and ~124mm thick rockwool infill (100kg/m3). The removable cover will cover on a 14m x 8m x 2.2m (H) concrete pit. There is a man-access lobby house and a ventilation opening. The man-access lobby house is installed on the removable noise cover. The ventilation opening is located on the concrete slab, which is installed with two units of 1.5m long silencers (total 3m long, Model MVS5). Details of the noise cover are presented in Annex D. PME with proposed mitigation measures are summarized in Table 4.

PME (% Operation)	Proposed Mitigation	Noise Reduction,	
	Measures	dB(A)	
Air blower (100%)			
Air Compressor (50%)			
Water Pump, submersible (electric) (100%)			
Aerial work platform, working height $\leq 13m (50\%)$			
Grout pump (50%)			
Grout mixer (50%)	Noisa anglosura	20 (T 1)	
Shotcreting Machine (50%)		20 (Tunnel)	
Light good vehicle < 5.5 tonne (50%)			
Loader, wheeled (50%)			
Ventilation fan (100%)			
Excavator, tracked (50%)			
Breaker, excavator mounted (hydraulic) (50%)			
Rock drill, crawler mounted (hydraulic) (50%)			
Air Compressor (50%)			
Water Pump, submersible (electric) (100%)			
Aerial work platform, working height $\leq 13m$ (50%)			
Concrete Mixer (100%)	Movable barrier	5 (Surface)	
Concrete Lorry Mixer (30%)			
Dump Truck, 5.5 tonne \leq GVW \leq 38 tonne (30%)			
Mobile crane (50%)			

Table 4: Summary of PME with Proposed Mitigation Measures

5.1.5. According to the construction programme of YMTS, noise assessments at the NSRs with implementation of proposed mitigation measures are presented in Annex E. The cumulative noise

assessment for the NSRs due to the concurrent construction activities (YMTS and YMTE) are presented in Annex F. The cumulative noise levels are summarized in Table 5.

NSR ID	NSR Description	Uses	Criterion dB(A)	Mitigated Noise Level range dB(A)	Maximum Exceedance dB(A)	Exceedance Duration/Months
W-N8A	Tak Cheong Building	R	75	72 - 81	6	23
W-N25A	Prosperous Garden Block 1	R	75	64 - 80	5	4
W-P11	The Coronation Tower 1 (West Façade)	R	7Y5	69 - 73	-	-

 Table 5:
 Summary of Cumulative Noise Levels at the NSRs (Mitigated)

5.1.6. With the implementation of the above-mentioned mitigation measures, residual impacts exceeding the construction noise criterion are still expected. The comparison of residual impacts between CKR EIA and this CNMMP is shown in Table 6.

Table 6: Mitigated Construction Noise Impact at the Identified NSRs

NSR	Noise			CNMI	MP Predic	tion					
	Criteria	Max Noise	Exce	edance Du	aration (Mo	onth)	Max Noise	Exce	edance Du	ration (Mo	onth)
	dB(A)	Level	1-4 dB(A)	5 dB(A)	6 dB(A)	7 dB(A)	Level	1-4 dB(A)	5 dB(A)	6 dB(A)	7 dB(A)
		dB(A)					dB(A)				
W-	75	82	26	5	4	2	81	16	4	3	_
N8A	75	02	20	5	т	2	01	10	7	5	_
W-	75	81	6	_	3		80	1	3	_	_
N25A	15	01	0	-	5	-		1	<mark>.</mark>	-	-
W-P11	75	77	4	-	-	-	73	-	-	-	-

5.1.7. According to cumulative noise assessment presented in Annex F, the predicted noise impact contributed from this project is insignificant comparing with the predicted noise impact from the concurrent project (YMTE). Despite the maximum noise level predicted at the nearest NSR – Tak Cheong Building due to the construction works of YMTS is 60dB(A), the overall noise level is substantially dominated by the concurrent construction activity of YMTE, and therefore the exceedance will still exist.

6. CONCLUSION

- 6.1. This CNMMP predicted the construction noise impact arising from the Yau Ma Tei Access Shaft construction site to the identified NSRs. This plan has updated the information on PMEs and works programme which will be adopted by Bouygues Travaux Publics. The proposed mitigation measures including use of quiet QPME, movable barriers and noise enclosure will be implemented.
- 6.2. According to the CNMMP prediction, no noise exceedance is predicted at the W-P11 which is better than EIA prediction comparatively. The overall construction noise impact would be reduced for all three NSRs in terms of duration and noise level, when comparing with the EIA prediction.
- 6.3. This CNMMP will be subsequently reviewed and updated along the construction phase. Liaison with the affected parties will be carried out to minimize the construction noise impact as far as practicable. Attention will be paid to the construction activities which are predicted to give noise exceedances. Appropriate mitigation measure such as re-arrangement of noisy activities shall be implemented when necessary.

Annex A

Layout Plan of CKR-CT and Yau Ma Tei Access Shaft Construction Site

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

ckr-btp

W	t集站 etRefuse	LEGEND:
P	oint	
/	4	WORK AREA (SURFACE)
	C A	
	Q	
		P1 SETTING OUT POINT
		~
		H I
_	. ~ /	
-		
\geq		
		ALS 1
S	COORD	
	EASTING	NORTHING
	835542.269	818916.054
	835532.693	818915.044 15.0
	835528.752	818914.629 A
	835523.942	818914.195
	835522.939	818914.120
	835519.329	818913.849
	835519.551	818912.570
	835520.946	818904.539 L
	835521.789	818897.938
	835523.077	818890.758
	835523.578	818887.203 919992.020
	835522.749	010074 669 73
	8355/11 166	818869.012
	000041.100	818868 424
	835549 277	818867 477
	835555 677	818866.494
	835560.343	818866.260
	835564.365	818865.986
	835565.736	818866.498
	835567.240	818869.426
	835568.293	818873.092
	835569.065	818878.059
	835569.961	818883.506
	835569.944	818884.876
	835569.825	818894.462
	835555.428	818892.963
	835546.398	818892.023
_		
Y/2	018/08 Central Tuppel	URAWING NO. HKCKR/BTP/SKT/YMS/TSI/000020
e - C		ISSUE STATUS CREATION DATE REVISION
201	(TAUE)	

ATION RDINATES A3 1:400 @ A3 1/1
Annex B

Construction Programme

Contract No. HY/2018/08 Central Kowloon Route - Central Tunnel

<u>YMTS Maj</u>	<u>or Works Programme</u>																								Cal	lend	ar Y	ear /	/ Mo	nth								
				201	19					202	0								202	21									202	2								20
item	Description of Works	Duration	Sep	Oct	Nov	Jan	Feb	Mar	May	Jun	Jul Aug	Sep	Oct	Nov	Jan	Feb	Mar	Apr May	Jun	Jul .	Sen	Oct	Nov	Dec	Jan Fah	Mar	Apr	May	Jun	Aug	Sep	Oct	Nov Dec	Jan	Feb	Apr	Мау	Jun
1	Tunnel Excavation (EB Tunnelling & Enlargement)	36 months																																				
2	Tunnel Excavation (WB Tunnelling & Enlargement)	13 months																																				1
3	Cut & Cover Tunnel (EB)	12 months																																				
4	Cut & Cover Tunnel (WB)	3 months																																				1

Annex C

Photo of Identified NSRs

Noise Sensitive	Reservoir Locations	
NSR	Location	Photo
W-N8A	Tak Cheong Building	
W-N25A	Prosperous Garden Block 1	
W-P11	The Coronation Tower 1 (West Facade)	

Annex D

Details of Noise Enclosure

Appendix A: Design Drawing of Removable Cover

ĿſL

Appendix B: Catalog of Noise Panel

Sales & Service H.K. Agent : Marion Acoustics Tel: 3580 1612, Fax : 3695 7997, Website :www.acoustic-hk.com (V-14-SY)

1-1-1

Machinery E	nclosure			V	Vater-Cool	ed Chiller Er	nclosure—	MTR (HK)	
"MYG" Acoustic sure to serve to reverberation in barriers. Applica usually require a back panels and obtain significan <u>Readily demour</u>	Panels can be he dual functio spaces and a tions in wall clac 50mm air spac building structu t results.	use in end n of reduc cting as no dding or ceil de between ure surface easily assem	clo- ing ise ing the , to						-
perfor	ated (typical) Roof A	pron					MM	A. 51	
Cutout for Pipe		Roof Channel	(<u>Before</u>			After	
15						Assemble	ed Joiner		
					7 1	Just .			
			Flo	oor / Wall Join	er	<u>"</u> +	1" - Joiner		
Window (Optional)	Access Door Floor Chan			<u>"T" - Joiner</u>		Cor	ner "L" - Joine	Ľ	
Machiner	v Room Noise Er	nclosure							
<u>Machiner</u>	y Room Noise Er	nclosure So	und Abs	orption	Coefficie	ent		_	
<u>Machiner</u>	y Room Noise Er	nclosure So	und Abs OCTAVE E	orption	Coefficie	ent QUENCY (H	<u>z)</u>		
<u>Machiner</u>	With the second	<u>So</u>	und Abs OCTAVE E 250	orption AND CEN 500	Coefficie TRE FREC <u>1K</u>	ent QUENCY (H <u>2K</u>	<u>z)</u> <u>4K</u>]	
<u>Machiner</u>	Model (MLW)	So 125 0.21	und Abs OCTAVE E 250 0.37	SAND CEN 500 0.42	Coefficie TRE FREC <u>1K</u> 0.51	ent QUENCY (H <u>2K</u> 0.64	<u>z)</u> <u>4K</u> 0.66		
<u>Machiner</u>	Model (MLW) 10 (10mm) 25 (25mm)	So 125 0.21 0.21 0.21	und Abs OCTAVE E 250 0.37 0.38	SAND CEN 500 0.42 0.42 0.42	Coefficie TRE FREC <u>1K</u> 0.51 0.56	ent QUENCY (H 2K 0.64 0.65 0.70	<u>z)</u> <u>4K</u> 0.66 0.69		
<u>Machiner</u>	<u>v Room Noise Er</u> Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm)	So 125 0.21 0.21 0.42	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93	Sorption SAND CEN 500 0.42 0.42 0.42 0.69 1.10	Coefficie TRE FREC <u>1K</u> 0.51 0.56 0.72 1.10	ent 2UENCY (H 2K 0.64 0.65 0.70 1 16	z) <u>4K</u> 0.66 0.69 0.72 1.02		
<u>Machiner</u>	Y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm)	So 125 0.21 0.21 0.42 0.42 0.42 0.48	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93	Song 500 0.42 0.42 0.69 1.10	Coefficie TRE FREC <u>1K</u> 0.51 0.56 0.72 1.10 1.13	ent 2UENCY (H 2K 0.64 0.65 0.70 1.16 1.16	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05		
Machiner	Y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) 125 (125mm)	So 125 0.21 0.21 0.42 0.42 0.42 0.43 0.50	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.95	Sand Solution 500 0.42 0.42 0.42 0.69 1.10 1.11 1.13	Coefficie TRE FREC 0.51 0.56 0.72 1.10 1.13 1.13	ent 2UENCY (H 0.64 0.65 0.70 1.16 1.16 1.17	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07		
Machiner	Y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) 125 (125mm)	So 125 0.21 0.21 0.42 0.42 0.48	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.95	Sand CEN 500 0.42 0.42 0.69 1.10 1.11 1.13	Coefficie TRE FREC 1K 0.51 0.56 0.72 1.10 1.13 1.13	ent QUENCY (H 0.64 0.65 0.70 1.16 1.16 1.17	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07		
Machiner	y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 100(100mm) 125 (125mm)	So 125 0.21 0.21 0.42 0.42 0.48 0.50	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95	Song 500 0.42 0.42 0.69 1.10 1.11 1.13	Coefficie TRE FREC 0.51 0.56 0.72 1.10 1.13 1.13 Loss, d	ent 2UENCY (H 2K 0.64 0.65 0.70 1.16 1.16 1.17 B DUENCY (H	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07		
Machiner	Y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) (MLW)	So 125 0.21 0.21 0.42 0.42 0.48 0.50 Source 250	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95 nd Trans OCTAVE E	оrption (AND CEN 500 0.42 0.42 0.42 0.69 1.10 1.11 1.13 mission AND CEN	<u>Coefficie</u> <u>TRE FREC</u> <u>1К</u> 0.51 0.56 0.72 1.10 1.13 1.13 1.13 Loss, d <u>TRE FREC</u> 2к	ent 2UENCY (H 2. 0.64 0.65 0.70 1.16 1.16 1.17 В 2UENCY (H 4к	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07 2. 8κ	STC	
Machiner Model	Y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) 125 (125mm) (MLW) 125 0mm) 6	So 125 0.21 0.21 0.42 0.42 0.48 0.50 Source 250 8	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95 nd Trans OCTAVE E 500 12	Solution Solution 500 0.42 0.42 0.69 1.10 1.11 1.13 mission SAND CEN 0.42 0.42 0.69 1.10 1.11 1.13 1.13 Mission 3AND CEN 22 22	Coefficie TRE FREC 0.51 0.56 0.72 1.10 1.13 1.13 Loss, d TRE FREC 22	ent 2UENCY (H 2K 0.64 0.65 0.70 1.16 1.16 1.17 B 2UENCY (H 25	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.02 1.05 1.07 z) <u>8K</u> 28	<u>STC</u> 15	
Machiner Model 10 (1 20 (2	y Room Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) 125 (125mm) (MLW) 125 (50mm) 0mm) 6 5mm) 7	So 125 0.21 0.21 0.42 0.42 0.43 0.50 Source 250 8 8 8	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Solution Solution SAND CEN 0.42 0.42 0.42 0.42 0.69 1.10 1.11 1.13 1.13 mission SAND CEN AND CEN 1.14 1.13 1.13 Mission 24 22 25	Coefficie TRE FREC 1K 0.51 0.56 0.72 1.10 1.13 1.13 Loss, d TRE FREC 2K 22 26	ent 2UENCY (H 0.64 0.65 0.70 1.16 1.16 1.17 B 2UENCY (H 4K 25 28	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07 z) <u>8K</u> 28 28 28	<u>STC</u> 15 18	
Machiner Model 10 (1 20 (2 50 (5	Weight Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) 125 (125mm) (MLW) 125 (125mm) 0mm) 6 5mm) 7 iomm) 10	So 125 0.21 0.21 0.42 0.42 0.43 0.50 Source 250 8 8 8 12	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95 DCTAVE E 500 12 16 18	Solution	Coefficie TRE FREC 0.51 0.51 0.72 1.10 1.13 1.13 1.13 Loss, d TRE FREC 22 26 34	ent 2UENCY (H 0.64 0.65 0.70 1.16 1.16 1.17 B 2UENCY (H 25 28 28 34	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07 <u>z)</u> <u>8K</u> 28 28 36	<u>STC</u> 15 18 24	
<u>Machiner</u> Model 10 (1 20 (2 50 (5 50P (5	Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 100(100mm) 125 (125mm) 0mm) 6 5mm) 7 50mm) 10	So 125 0.21 0.21 0.42 0.42 0.43 0.50 Source 250 8 12 250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95 md Trans OCTAVE E 500 12 16 18 35	Solution	Coefficie TRE FREC 1K 0.51 0.56 0.72 1.10 1.13 1.13 LOSS, d TRE FREC 22 26 34 54	ent 2UENCY (H 2UENCY (H 0.64 0.65 0.70 1.16 1.16 1.17 B 2UENCY (H 4K 25 28 34 61	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07 2. 28 28 28 28 36 59	<u>STC</u> 15 18 24 40	
Machiner Model 10 (1 20 (2 50 (5 50P (1 100 (1	Weight Noise Er Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P (50mm) 100(100mm) 125 (125mm) 125 (125mm) (MLW) 125 (125mm) 6 5mm) 7 60mm) 10 50mm) 10 00mm) 21 00mm) 23	So 125 0.21 0.21 0.21 0.42 0.42 0.43 0.50 Source 2 250 8 8 12 27 33	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.93 0.93 0.95 md Trans OCTAVE E 500 12 16 18 35 39	Solution	Coefficie TRE FREC 0.51 0.56 0.72 1.10 1.13 1.13 Loss, d TRE FREC 22 26 34 54 54	ent 2UENCY (H 0.64 0.65 0.70 1.16 1.16 1.17 B 2UENCY (H 25 28 28 28 34 61 62	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07 z) <u>8K</u> 28 28 36 59 59	STC 15 18 24 40 42	
Machiner Model 10 (1 20 (2 50 (5 50P (1 100 (1 125 (1	Model (MLW) 10 (10mm) 25 (25mm) 50 (50mm) 50P(50mm) 100(100mm) 125 (125mm) 0mm) 6 5mm) 7 00mm) 10 500mm) 21 00mm) 23 25mm) 24	So 125 0.21 0.21 0.42 0.42 0.43 0.50 Sourt 250 8 12 27 33 42	und Abs OCTAVE E 250 0.37 0.38 0.57 0.93 0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Image: second	Coefficie TRE FREC 1K 0.51 0.56 0.72 1.10 1.13 1.13 LOSS, d TRE FREC 22 26 34 54 54 54	ent 2UENCY (H 2UENCY (H 0.64 0.65 0.70 1.16 1.16 1.17 B 2UENCY (H 4K 25 28 28 34 61 62 63	z) <u>4K</u> 0.66 0.69 0.72 1.02 1.05 1.07 2. 2.8 2.8 2.8 2.8 3.6 5.9 5.9 5.9	STC 15 18 24 40 42 50	

Sales & Service H.K. Agent : Marion Acoustics Tel: 3580 1612, Fax : 3695 7997, Website :www.acoustic-hk.com (V-15-SY)

Annex E

Predicted Noise Level at the NSRs

Predicted Noise Level for NSR														
Tak Cheong Building (W-N8A)														
Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)					
Funnel Excavation (EB Tunnelling & Enlargement)														
Lir Blower CNP 006 95 6 103 69 -45 -20 3 41.24														
Air Compressor (50%)	CNP 002	99	1	99	69	-45	-20	3	37.24					
Water Pump, submersible (electric)	CNP 283	85	10	95	69	-45	-20	3	33.24					
Mobile crane (50%)	EPD-09573	99	1	99	69	-45	-5	3	52.24					
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	69	-45	-20	3	33.24					
Grout pump (50%)	CNP 106	102	1	102	69	-45	-20	3	40.24					
Grout mixer (50%)	CNP 105	87	1	87	69	-45	-20	3	25.24					
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	69	-45	-20	3	43.24					
Loader, wheeled (50%)	CNP 081	109	1	109	69	-45	-20	3	47.24					
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (50%)	CNP 068	102	1	102	69	-45	-5	3	55.24					
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	69	-45	-20	3	36.24					
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	69	-45	-5	3	46.24					
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	69	-45	-20	3	41.24					
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	69	-45	-20	3	45.24					
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	69	-45	-20	3	43.24					
Ventilation fan	CNP 241	108	1	108	69	-45	-20	3	46.24					
								Total CNL	58.84					

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation (WB Tunnelling & Enlargement	nt)								
Air Blower	CNP 006	95	6	103	69	-45	-20	3	41.24
Air Compressor (50%)	CNP 002	99	1	99	69	-45	-20	3	37.24
Water Pump, submersible (electric)	CNP 283	85	10	95	69	-45	-20	3	33.24
Mobile crane (50%)	EPD-09573	99	1	99	69	-45	-5	3	52.24
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	69	-45	-20	3	33.24
Grout pump (50%)	CNP 106	102	1	102	69	-45	-20	3	40.24
Grout mixer (50%)	CNP 105	87	1	87	69	-45	-20	3	25.24
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	69	-45	-20	3	43.24
Loader, wheeled (50%)	CNP 081	109	1	109	69	-45	-20	3	47.24
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (50%)	CNP 068	102	1	102	69	-45	-5	3	55.24
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	69	-45	-20	3	36.24
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	69	-45	-5	3	46.24
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	69	-45	-20	3	41.24
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	69	-45	-20	3	45.24
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	69	-45	-20	3	43.24
Ventilation fan	CNP 241	108	1	108	69	-45	-20	3	46.24
								Total CNL	58.84
				0			a m	I COD O INTON	(1.0=

Cumulative Noise Level - Cut & Cover Tunnel (EB & WB) 61.85

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Cut & Cover Tunnel (EB)									
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	69	-45	-20	3	41.24
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	69	-45	-5	3	57.24
Grout pump (50%)	CNP 106	102	1	102	69	-45	-20	3	40.24
Grout mixer (50%)	CNP 105	87	1	87	69	-45	-20	3	25.24
Mobile crane (50%)	EPD-09573	99	1	99	69	-45	-5	3	52.24
Dump Truck, 5.5 tonne < GVW ≤ 38 tonne (30%)	CNP 068	100	1	100	69	-45	-5	3	53.24
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	69	-45	-5	3	44.24
								Total CNL	59.82

Total SWL, dB(A) Project Specific PME Item Dist. From NSR, m Dist. Corr., dB(A) Screening Corr., dB(A) Façade Corr., dB(A) Reference SWL dB(A) No. of Items CNL, dB(A) Cut & Cover Tunnel (WB) Excavator, tracked (Access shaft) (50%) EPD-07059 103 103 69 -45 -20 3 41.24 1 Concrete Lorry Mixer (30%) CNP 044 104 104 69 -45 -5 3 57.24 1 Grout pump (50%) CNP 106 102 1 102 69 -45 -20 3 40.24 Grout mixer (50%) CNP 105 87 1 87 69 -45 -20 3 25.24 Mobile crane (50%) EPD-09573 99 99 69 -45 -5 3 52.24 1 Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%) CNP 068 100 100 69 -45 -5 53.24 1 3 Water Pump, submersible (electric) (Ground surface) CNP 283 85 4 91 69 -45 -5 44.24 3 59.82 Total CNL Cumulative Noise Level - Cut & Cover Tunnel (EB & WB) 62.83

Predicted Noise Level for NSR

BOUYGUES TRAVAUX PUBLICS

Prosperous Garden Block 1 (W-N25A)

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation (EB Tunnelling & Enlargem	ient)								
Air Blower	CNP 006	95	6	103	198	-54	-20	3	32.08
Air Compressor (50%)	CNP 002	99	1	99	198	-54	-20	3	28.08
Water Pump, submersible (electric)	CNP 283	85	10	95	198	-54	-20	3	24.08
Mobile crane (50%)	EPD-09573	99	1	99	198	-54	-5	3	43.08
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	198	-54	-20	3	24.08
Grout pump (50%)	CNP 106	102	1	102	198	-54	-20	3	31.08
Grout mixer (50%)	CNP 105	87	1	87	198	-54	-20	3	16.08
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	198	-54	-20	3	34.08
Loader, wheeled (50%)	CNP 081	109	1	109	198	-54	-20	3	38.08
Dump Truck, 5.5 tonne \leq GVW \leq 38 tonne (50%)	CNP 068	102	1	102	198	-54	-5	3	46.08
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	198	-54	-20	3	27.08
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	198	-54	-5	3	37.08
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	198	-54	-20	3	32.08
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	198	-54	-20	3	36.08
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	198	-54	-20	3	34.08
Ventilation fan	CNP 241	108	1	108	198	-54	-20	3	37.08
	-	•	•	•	-	•	•	Total CNL	49.69

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation (WB Tunnelling & Enlargement)									
Air Blower	CNP 006	95	6	103	198	-54	-20	3	32.08
Air Compressor (50%)	CNP 002	99	1	99	198	-54	-20	3	28.08
Water Pump, submersible (electric)	CNP 283	85	10	95	198	-54	-20	3	24.08
Mobile crane (50%)	EPD-09573	99	1	99	198	-54	-5	3	43.08
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	198	-54	-20	3	24.08
Grout pump (50%)	CNP 106	102	1	102	198	-54	-20	3	31.08
Grout mixer (50%)	CNP 105	87	1	87	198	-54	-20	3	16.08
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	198	-54	-20	3	34.08
Loader, wheeled (50%)	CNP 081	109	1	109	198	-54	-20	3	38.08
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (50%)	CNP 068	102	1	102	198	-54	-5	3	46.08
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	198	-54	-20	3	27.08
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	198	-54	-5	3	37.08
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	198	-54	-20	3	32.08
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	198	-54	-20	3	36.08
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	198	-54	-20	3	34.08
Ventilation fan	CNP 241	108	1	108	198	-54	-20	3	37.08
								Total CNL	49.69

Cumulative Noise Level - Cut & Cover Tunnel (EB & WB) 52.70

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Cut & Cover Tunnel (EB)									
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	198	-54	-20	3	32.08
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	198	-54	-5	3	48.08
Grout pump (50%)	CNP 106	102	1	102	198	-54	-20	3	31.08
Grout mixer (50%)	CNP 105	87	1	87	198	-54	-20	3	16.08
Mobile crane (50%)	EPD-09573	99	1	99	198	-54	-5	3	43.08
Dump Truck, 5.5 tonne < GVW ≤ 38 tonne (30%)	CNP 068	100	1	100	198	-54	-5	3	44.08
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	198	-54	-5	3	35.08
								Total CNL	50.66

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Cut & Cover Tunnel (WB)									
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	198	-54	-20	3	32.08
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	198	-54	-5	3	48.08
Grout pump (50%)	CNP 106	102	1	102	198	-54	-20	3	31.08
Grout mixer (50%)	CNP 105	87	1	87	198	-54	-20	3	16.08
Mobile crane (50%)	EPD-09573	99	1	99	198	-54	-5	3	43.08
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	198	-54	-5	3	44.08
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	198	-54	-5	3	35.08
								Total CNL	50.66
				Cum	ulative Noise	Level - Cut &	Cover Tunne	(EB & WB)	53.67

Predicted Noise Level for NSR														
EQUIVE PUBLICS The Coronation Tower 1 (W-P11)														
Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)					
Funnel Excavation (EB Tunnelling & Enlargement)														
Air Blower CNP 006 95 6 103 459 -61 -20 3 24.78														
Air Compressor (50%)	CNP 002	99	1	99	459	-61	-20	3	20.78					
Water Pump, submersible (electric)	CNP 283	85	10	95	459	-61	-20	3	16.78					
Mobile crane (50%)	EPD-09573	99	1	99	459	-61	-5	3	35.78					
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	459	-61	-20	3	16.78					
Grout pump (50%)	CNP 106	102	1	102	459	-61	-20	3	23.78					
Grout mixer (50%)	CNP 105	87	1	87	459	-61	-20	3	8.78					
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	459	-61	-20	3	26.78					
Loader, wheeled (50%)	CNP 081	109	1	109	459	-61	-20	3	30.78					
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (50%)	CNP 068	102	1	102	459	-61	-5	3	38.78					
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	459	-61	-20	3	19.78					
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	459	-61	-5	3	29.78					
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	459	-61	-20	3	24.78					
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	459	-61	-20	3	28.78					
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	459	-61	-20	3	26.78					
Ventilation fan	CNP 241	108	1	108	459	-61	-20	3	29.78					
								Total CNL	42.38					

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation (WB Tunnelling & Enlargement)									
Air Blower	CNP 006	95	6	103	459	-61	-20	3	24.78
Air Compressor (50%)	CNP 002	99	1	99	459	-61	-20	3	20.78
Water Pump, submersible (electric)	CNP 283	85	10	95	459	-61	-20	3	16.78
Mobile crane (50%)	EPD-09573	99	1	99	459	-61	-5	3	35.78
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	459	-61	-20	3	16.78
Grout pump (50%)	CNP 106	102	1	102	459	-61	-20	3	23.78
Grout mixer (50%)	CNP 105	87	1	87	459	-61	-20	3	8.78
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	459	-61	-20	3	26.78
Loader, wheeled (50%)	CNP 081	109	1	109	459	-61	-20	3	30.78
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (50%)	CNP 068	102	1	102	459	-61	-5	3	38.78
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	459	-61	-20	3	19.78
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	459	-61	-5	3	29.78
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	459	-61	-20	3	24.78
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	459	-61	-20	3	28.78
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	459	-61	-20	3	26.78
Ventilation fan	CNP 241	108	1	108	459	-61	-20	3	29.78
								Total CNL	42.38

Cumulative Noise Level - Cut & Cover Tunnel (EB & WB) 45.39

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Cut & Cover Tunnel (EB)	ut & Cover Tunnel (EB)								
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	459	-61	-20	3	24.78
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	459	-61	-5	3	40.78
Grout pump (50%)	CNP 106	102	1	102	459	-61	-20	3	23.78
Grout mixer (50%)	CNP 105	87	1	87	459	-61	-20	3	8.78
Mobile crane (50%)	EPD-09573	99	1	99	459	-61	-5	3	35.78
Dump Truck, 5.5 tonne < GVW ≤ 38 tonne (30%)	CNP 068	100	1	100	459	-61	-5	3	36.78
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	459	-61	-5	3	27.78
								Total CNL	43.36

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Cut & Cover Tunnel (WB)	• •								
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	459	-61	-20	3	24.78
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	459	-61	-5	3	40.78
Grout pump (50%)	CNP 106	102	1	102	459	-61	-20	3	23.78
Grout mixer (50%)	CNP 105	87	1	87	459	-61	-20	3	8.78
Mobile crane (50%)	EPD-09573	99	1	99	459	-61	-5	3	35.78
Dump Truck, 5.5 tonne $<$ GVW \le 38 tonne (30%)	CNP 068	100	1	100	459	-61	-5	3	36.78
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	459	-61	-5	3	27.78
								Total CNL	43.36
				Cum	ulative Noise	Level - Cut &	Cover Tunne	(EB & WB)	46.37

Annex F

Cumulative Noise Level at the NSRs

Contract No. HY/2018/08 Central Kowloon Route - Central Tunnel

Calendar Year / Month **Cumulative Noise Assessment - YMT** 2020 2021 2022 Period with concurrent activities - Sep 2020 - Sep 2024 Sep Nov Feb Mar Apr May Jun Feb Mar NSR ID NSRs Dec lan oct Apr Jul Ча Ча **CKR-CT Construction Noise Level, dB(A)** W-N8A Tak Cheong Building 62 62 62 59 W-N25A Prosperous Garden Block 1 W-P11 The Coronation Tower 1 (West Façade) CKR-YMTE Construction Noise Level, dB(A) <mark>30 79 79 79 77</mark> 73 73 73 77 77 77 76 76 76 75 75 75 75 75 75 7 W-N8A Tak Cheong Building 77 76 76 79 75 75 81 81 81 78 79 W-N25A 68 69 69 72 68 65 68 68 69 68 72 72 74 75 75 <mark>79</mark> 75 74 74 74 73 73 73 73 73 80 Prosperous Garden Block 1 68 65 65 65 65 7 W-P11 The Coronation Tower 1 (West Façade) Cumulative Construction Noise Level, dB(A) (Including CKR-CT & CKR-YMTE) 75 75 81 81 81 8 0 79 79 79 77 73 73 77 77 77 76 W-N8A Tak Cheong Building 78 79 75 75 75 75 75 W-N25A Prosperous Garden Block 1 68 65 68 68 69 68 72 72 74 75 75 79 75 74 74 74 74 73 73 73 73 73 68 69 69 72 W-P11 The Coronation Tower 1 (West Façade) 71 73 Remarks Exceedance: As shown in the above table, the cumulative construction noise level is d 1-4 dB(A) construction noise from CKR-YMTE. The contribution from CKR-CT is neg 5 dB(A) overall noise level. 6 dB(A)

	20	23											20	24					
IVIdY	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
9	59	59	59		60	60	60	60	60	60	60	63	63	63	60	60			
60	50	50	50		51	51	51	51	51	51	51	54	54	54	51	51			
2	42	42	42		43	43	43	43	43	43	43	46	46	46	43	43			
'5	75	75	73	73	73	75	75	73	73	74	74	73	73	73	72	72			
2	72	72	72	72	75	75	75	64	64	66	66	66	66	66	65	65			
'3	73	73	73	73	73	69	69	69	69	69	69	69	69	69	69	69			
'5	75	75	73	73	73	75	75	73	73	74	74	73	73	73	72	72			
2	72	72	72	72	75	75	75	64	64	66	66	66	66	66	65	65			
'3	73	73	73	73	73	69	69	69	69	69	69	69	69	69	69	69			
do glig	min gabl	iate le in	d by i the	/															

Annex G

Details of Acoustic Materials for Construction of Noise Enclosure

What is AAC Panel & Block

AAC Panel is the shortened form of Autoclaved Aerated Concrete Panel. The main materials of AAC panel are silicon sand, cement, lime etc. Reinforced with anti-stain processed steel bar, the concrete panel with many air holes was formed after high-temperature, high-pressure protection with steam. It's a new type constructional material with excellent functions. There are patents of Germany and Sweden and Japan included in the production equipments. The complete production process, from mixing raw material, anti-stain processing of steel bar, organizing into frame, pouring paste on, cutting, steaming and pressing to surface processing, is calculated accurately with computer program and has a rigid QC control.

AAC Block is the shortened form of Autoclaved Aerated Concrete Block. The difference of the AAC block from the AAC panel are: 1) no reinforced steel inside 2) sizes are smaller than AAC panel

Catalog of AAC Noise Panel

The Application Scope of AAC

- AAC panels have been used in many cities through China, such as Guangzhou, Shanghai, Ningbo, Suzhou, Wuxi, and Australia, New Zealand, Japan, Middle-East, Europe, USA, South-East Asia etc.
- AAC panels have been used various kinds of buildings, such as public facilities, industrial constructions, civil housing, hospital, hotel, schools, stores, supermarkets etc. The construction structures it suits also expand from concrete frame structure, steel frame structure, to other structures.
- The existing products range from interior partition wall panels to exterior walls, ornamental wall panels, floor, roofing and cladding.

Changzhou, Tianjin, Beijing, Qingdao, Dalian, etc. The products are also regularly exported to other countries, such as

The Product Range of AAC

Standard AAC Panels

- AAC External Wall Panel
- AAC Partition Wall Panel
- AAC Flooring Slab
- AAC Roofing Slab
- AAC Wall Cladding
- AAC Fencing Panel

Standard AAC Blocks

- AAC External Wall Block
- AAC Internal Wall Block

The Test Result of AAC

Character	istics	Unit	Test Value	Criterion	Value of Criterion
			Grade 04: 412	(analysis)	≤425
Dry Density		Kg/m3	Grade 05: 503	GB/T11970	≤525
			Grade 06: 608	-1997	≤625
			Grade 04: 2.4	1	≥2.0
	Average		Grade 05: 4.0	0.5/5/10.5/	≥3.5
Compressive		Мра	Grade 06: 5.3	GB/1119/1	≥5.0
Strength			Grade 04: 2.2	-1997	≥1.6
	Minimum		Grade 05: 3.7]	≥2.8
			Grade 06: 4.9		≥4.0
Dry Shrinks	308	mm/m	Grade 04/05: 0.66	GB/T11972	
bij onnika	.90	mman	Grade 06: 0.65	-1997	≤0.8
	Quality Leat	0/	Grade 04: 0.7		CE 0
France	Quality Lost	%	Grade 05/06: 1.0	CP/T11073	-0.0
Prozen	Strength After Frozen	12,12	Grade 04: 2.0	-1997	≥1.6
Resistanc		Mpa	Grade 05: 3.6		≥2.8
			Grade 06: 4.8		≥4.0
			Grade 04: 0.11	The Contract of	≤0.12
Thermal Con	ductivity	W/(m.k)	Grade 05: 0.13	GB/T10295	≤0.14
			Grade 06: 0.15	-88	≤0.16
	120mm thick	dB	40.5 (render)		
	150mm thick	dB	40.5 (no render)	11	
	150mm thick di		41.5 (render)	GBJ75-84	
Sound	200mm thick	dB	44.5 (no render)	GB/T50121	
Insulation	200mm thick	dB	45 (render)	-2005	
	240mm thick	dB	47.5 (no render)]	
	240mm thick	dB	48.5 (render)		
	240mm thick	dB	51 (complex)		
Infiltration Re (6 days, fallin	sistance g in water)	mm	88.2	JISA 54160 -1997	≤100
Fire Resistand (100mm thick)	ce	hour	≥4.0	GB/T9978 -1999	1. ≥4.0 2. ≥3.0
Modulus of El	asticity	N/mm2	1800		
Water Absorpt	tion	°/vol	Totally underwater: 36 Partly underwater: 30		
Expansion Co	efficient	/1	7.0 x 10-6	1.2.4	

Acoustic Test Report for "Eastland" AAC Noise Panel

Intertek Testing Services Shenzhen Ltd. Shanghai Fengxian Branch Plant 5, No. 6958 Daye Road, Fengxian District, Shanghai, China Tel: 021-61136116 Fax: 021-61189921 Website: www.intertek.com

Test Report

Issue Date:	2019-12-03	Intertek Report No.	191126017SHF-001			
Applicant:	Dragages Hong Kong Limited					
Address:	3/F, Island Place Tower, 510 King'	s Road, North Point, Hong Kong				
Attn:	Elly SUN					
Manufacturer:	Eastland International Limited	Eastland International Limited				
Address:	2404, Building 4, No. 37 Pukou Avenue, Nanjing, China					
Test Type :	Performance test, samples provided by the applicant.					

Product Information

Product Name		Noise Panel	Brand	1	
Sample		Courd Courdiaises	Sample Amount	10 PCS	
Description	Description Good Co		Received Date	2019-11-26	
Sam	pie ID	Model	Specification		
\$1911260175HF.001		1	3m x 0.6m x 0.12m noise panel + 50mm Thick Rockwool		

Test Methods And Standards

Test Standard	ISO 10140-2:2010
Specification Standard	ISO 717-1:2013
Test Conclusion	The samples were tested according to the above standards, and the results are shown in the following page.

Note:

 This report relates specifically to the sample(s) that were drawn and provided by the applicant or their nominated third party. The reported result(s) provide no warranty or verification on the sample(s) representing any specific goods and/or shipment and only relate to the sample(s) as received and tested.

Report Authorized

Z Jodie Zhou

Name: Jodie Zho Title: Reviewer Name: Mason Wang Title: Project Engineer

验检测专用》

Test Report

Issue Date:	2019-12-03		Intertek Report No.	191126017SH	F-001
Test Items, Method and	Results:				
Test method: ISO 10140-2	2010				
Temperature:	16.5	°C	Relative Humidity:	80	%
Volume of the source roo	m: 112	m³	Volume of the receiving room:	137	m³
Specimen area:	12.6	m ²			

Frequency (Hz)	Sound Reduction Index, Ri (dB)	
100	32.0	
125	32.0	
160	31.9	
200	33.1	
250	31.6	
315	34.9	
400	36.7	
500	38.3	
630	43.3	
800	47.0	
1000	51.4	
1250	54.4	
1600	55.8	
2000	57.5	
2500	60.3	
3150	63.4	
4000	65.8	
5000	68.5	

Rating according to ISO 717-1:2013

Weighted Sound reduction index	Rw(C;Ctr)=	45(-2;-5)	dB	
Spectrum A-weighted pink noise	C=	-2	dB	
Spectrum A-weighted urban traffic noise	Ctr=	-5	dB	

Note:

1. Evaluation based on laboratory measurement results obtained by an engineer method.

2. The detailed sample installation drawing in Appendix A was provided by the applicant.

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

Far East) Ltd.
Hong Kong Plaza, Road West,

Laboratory Measurement Report for Airborne Sound Insulation to ISO 10140-2 for SNAPAcoustics Noise Barrier Panels model SD150RW

Page 1 of 11

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

NOTES

- 1. This report will be invalid if:
 - 1) Without SNAP Laboratory's seals.
 - 2) Without signatures of analysts, verified and approved by SNAP Laboratory.
 - 3) Partially reproduced without the written approval of SNAP Laboratory.
 - 4) Altered.
- 2. SNAP Laboratory will be responsible for the samples tested only.
- Contact SNAP Laboratory should you have any questions and inquiries about this report within two weeks after received it.

地址: 广东省惠州市惠阳区秋长镇枯园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-380680 传真: 0752-3919311 Ulfu (E-mail):reslab@supnap.com 网址(http):www.supremeacoustics.com

Page 2 of 11

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

TESTING CNAS L8117

CONTENTS

- 1.0 Introduction
- 2.0 Date & Time
- 3.0 Environmental conditions
- 4.0 Test Conducted By
- 5.0 Reference Standards
- 6.0 Description of the test specimen
- 7.0 Instrumentation
- 8.0 Measurement Procedures
- 9.0 Results
- 10.0 Appendix

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:(Tel):0752-3806880
 传真:0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

1.0 Introduction

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory was invited by NAP Acoustics (Far East) Ltd. to determine room-to-room airborne sound insulation of SNAPAcoustics Noise Barrier Panels model SD150RW in accordance with ISO 10140-2:2010.

The test specimen was installed at the test aperture between two Reverberation Rooms at No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China. The volume of the source room named Saturn and the receiving room named Uranus were 127 m^3 and 90.6 m^3 respectively. The structural opening dimensions of the test aperture between two rooms was 4,130 (W) x 3,280 (H) mm.

2.0 Date & Time

12. 20

Ś

Sample was received on 30 June 2020. Test was conducted from 16:00 to 17:30 on 10 July 2020.

3.0 <u>Environmental Conditions</u>

	Source room	Receiving room
温度 Temperature	31.7 deg. C	31.6 deg. C
湿度 Relative humidity	63 %	65 %

4.0 Test Conducted By

Ms. Fanni Lin	Test Engineer
Mr. Amber Lin	Test Engineer

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

5.0 Reference Standards

- "ISO 10140-2:2010 Acoustics Laboratory measurement of sound insulation of building elements Part 2: Measurement of airborne sound insulation "
- "ISO 3382-2:2008 Acoustics Measurement of room acoustic parameters Part 2: Reverberation time in ordinary rooms"
- "ISO 717-1:2013 Acoustics Rating of sound insulation in buildings and of building elements Part 1: Airborne sound insulation"

6.0 Description of the test specimen

- 6.1 The test specimen was said to be SNAPAcoustics Noise Barrier Panels model SD150RW in thickness of 150 mm. The solid outer shell of the panel was made of 0.8 mm galvanized steel sheet with calcium silicate board in density of 1550 kg/m³ as damping materials. The sound absorption face was made of 0.5 mm thick galvanized steel sheet having perforation of 23 %. The panels were filled with 60 kg/m³ rock wool and covered with black fiberglass tissue.
- 6.2 The test specimen consisted of 7 pieces of the said Noise Barrier Panels in size of 3,200 mm (L) x 565 mm (W). The panels were installed into the test aperture which joined together to form an overall size of 12.7 m².
- 6.3 Photograph of the test specimen installed for testing was given in Appendix 10.

 地址:
 广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:
 (Tel):0752-3806880

 传真:
 0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

7.0 Instrumentation

The instrumentation used for the measurement was as follows:

- 7.1 Norsonic Type 150 Dual-Channel Investigator complying with IEC 61672-1 (Class 1) / ANSI S1.43-1997 (Type 1), with 1/3 octave bands filter complying with IEC 61260 / ANSI S1.11-2004 Class 0 / ANSI S1.11-1986, Order 3, Type 0-C, for sound pressure levels measurements. Microphone extension cables, and internal sound source were used during the measurements.
- 7.2 Omni Power Sound Source Type Nor 276 and power amplifier Nor 280.
- 7.3 Bruel & Kjaer Sound Level Calibrator Type 4231, complying with IEC 60942.

8.0 <u>Measurement Procedure</u>

- 8.1 Calibration checks were carried out on the Sound Measuring Instrument with the Sound Level Calibrator, before and after the measurements. The difference in the calibration value before and after measurements should be no more than 0.5 dB.
- 8.2 White Noise was generated in the source room so that the transmitted sound level in the receiving room was at least 6 dB above the background noise level at all frequencies. Source and microphone positions were chosen according to ISO 10140-2:2010. Measurements were taken for three source positions, with six microphone positions in the source and receiving room respectively. The Level Difference $D = L_{p1} L_{p2}$ as per defined in ISO 10140-2:2010 was then calculated.
- 8.3 For the purpose of estimating the Sound Reduction Index *R*, the reverberation time in the receiving room was measured according to ISO 3382-2, choosing two loudspeaker positions and six microphone positions.

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

Page 6 of 11

「日田公」

69

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

8.4 The Sound Reduction Index R was calculated according to ISO 10140-2:2010 as: $R = L_{p1} - L_{p2} + 10\log(S / A)$

where

- L_{p1} is the average sound pressure level in the source room, in decibels;
- L_{p2} is the average sound pressure level in the receiving room, in decibels;
- *S* is the area of the test specimen, in square meters;
- *A* is the equivalent sound absorption area in the receiving room, in square meters.
- 8.5 The Weighted Sound Reduction Index R_w was determined from the value of R in 1/3 octave bands with centre frequencies from 100 Hz to 3,150 Hz, following the procedure given in ISO 717-1:2013.

Note: Rw is a single-number values intended to give rating of airborne sound insulation in view to compare the performance of different systems.

9.0 <u>Results</u>

9.1 Calibration checks were carried out on the sound level meter before and after the measurements. The results were recorded below:

Sound level meter	Nor 150 (Channel 1)	Nor 150 (Channel 2)
Calibrator Reference	94.0 dB	94.0 dB
Before Measurement	94.0 dB	94.0 dB
After Measurement	94.0 dB	94.0 dB
Drift	0 dB	0 dB

地址:广东省惠州市惠阳区秋长镇桔园路56号

Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China电话: (Tel):0752-3806880传真: 0752-3919311电邮 (E-mail):reslab@supnap.com网址 (http):www.supremeacoustics.com

Page 7 of 11

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

9.2 The Sound Reduction Index of SNAPAcoustics Noise Barrier Panels model SD150RW was determined in accordance with ISO 10140-2:2010 to achieve the following values:

1/3 Octave Band Centre Frequency (Hz)	Sound Reduction Index R (dB)	1/1 Octave Band Frequency Sound Reduction Index <i>R</i> (dB)			
50	19.8				
63	22.1	20.9			
80	21.2				
100	28.8				
125	32.6	31.3			
160	34.3				
200	37.6				
250	41.3	40.2			
315	44.0	~			
400	46.6				
500	47.3	47.6			
630	49.3	1			
800	50.0				
1000	53.8	52.8			
1250	58.2				
1600	60.2				
2000	61.7	61.8			
2500	64.7	1			
3150	66.4				
4000	68.3	67.7			
5000	68.7	-			
6300	67.8	1			
8000	66.3	57.8			
10000	53.4	-			
Weighted Sound Reduction Index R _w	$R_{\rm W}\left(C;C_{ m tr} ight)$ =	= 51 (-2;-7)			
(ISO 717-1:2013)	Sum of unfavourable deviations: 31.4 dB				

地址:广东省惠州市惠阳区秋长镇桔园路56号

Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China电话: (Tel):0752-3806880传真: 0752-3919311电邮(E-mail):reslab@supnap.com网址(http):www.supremeacoustics.com

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

9.3 The following graph shows the Sound Reduction Index of SNAPAcoustics Noise Barrier Panels model SD150RW plotted against frequency (dotted line) and the shifted reference curve (solid line), the bars show the values of the unfavourable deviations for each frequency band.

Figure 1: Sound Reduction Index *R*, reference curve for $R_w = 51 \text{ dB}$ For SNAPAcoustics Noise Barrier Panels model SD150RW

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

10.0 Appendix

10.1 Photograph of the test specimen installed for testing.

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话: (Tel):0752-3806880
 传真: 0752-3919311

 电邮 (E-mail):reslab@supnap.com
 网址 (http):www.supremeacoustics.com

EN TR

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

**** END OF REPORT ****

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:(Tel):0752-3806880
 传真:0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

Page 11 of 11

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

SIZE	REMARKS
6mm THK. CHANNEL	GRADE Q 235
VERT.) + 4 NOS. (HORI.) PER FRAME	GRADE S275
VERT.) + 4 NOS. (HORI.) PER FRAME	GRADE S275
DF M12 GRADE 4.6	SPACED AT 750mm c/c MAX
N. 220mm	GRADE S275
60 x 5mm SHS	GRADE S275 HANGER SPACED AT 750mm o/o
ONSTRUCT BY OTHERS	-
ETARY PRODUCT	-
nø WASHER GRADE 4.6	-

	DRAWING NO.					
Y/2018/08 e - Central Tunnel	HKCKR/BTP/MDG/HMS/TSI/338223					
(SURFACE) IOISE ENCLOSURE DOOR	issue status FOR INFORMATION	creation date 21/07/2020	REVISION			
	PAPER SIZE	SCALE	PAGE			
	A3	N.T.S.	10/10			

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

SIZE	REMARKS
6mm THK. CHANNEL	GRADE Q 235
(VERT.) + 7 NOS. (HORI.) PER FRAME	GRADE S275
OF M12 GRADE 4.6	SPACED AT 750mm c/c MAX
IN. 270mm	GRADE S275
60 x 5mm SHS	GRADE S275 HANGER SPACED AT 750mm o/o
ONSTRUCT BY OTHERS	-
ETARY PRODUCT	-
m# WASHER GRADE 4.6	-

Y/2018/08	DRAWING NO.						
e - Central Tunnel	HKCKR/BTP/MDG/HMS/TSI/338224						
(SURFACE) OISE ENCLOSURE DOOR	issue status FOR INFORMATION	creation date 21/07/2020	A				
	paper size	scale	page				
	A3	N.T.S.	5/5				

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

Y/2018/08 e - Central Tunnel	drawing no. HKCKR/BTP/N	IDG/HMS/TSI/33	8223
(SURFACE)	issue status	creation date 21/07/2020	revision
IOISE ENCLOSURE DOOR	FOR INFORMATION		A
	paper size	scale	page
	A3	N.T.S.	3/10

				1								1		
Бя		-	-	-	-		MAIN CONTRACTOR	CLIENT	THE SUPERVISOR	PROJECT	Contract No. HY/2018/08	DRAWING NO.		
7_a.d		-	-	-	-	-					Central Kowloon Route - Central Tunnel	HKCKR/BIP/I	MDG/HMS/TSI/3	538223
321.		-	-	-	-	-		· · · · · · · · · · · · · · · · · · ·	MACDONALD	DO ANNO TIT		ISSUE STATUS	CREATION DATE	REVISION
-33		_	-	-	-	_	BOUYGUES	莱 风君	CONTRACTOR'S TEMPORARY WORK DESIGNER	DRAWING III	HO MAN TIN (SURFACE)	FOR INFORMATION	21/07/2020	A
-tsi		_	_	-	_	-	TRAVAUX PUBLICS	HIGHWAYS DEPARTMENT			DETAIL DRAWING OF 7.5m NOISE ENCLOSURE DOOR		, ,	
-hms	A FIRST ISSUE	21/07/2020	KNC	KNC	KNC	KNC			aurecon			PAPER SIZE	SCALE	PAGE 8/10
-6pm	REV DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	IN-CHARGE						AJ	N.I.S.	

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF

Acoustic Test Report for "Kinetics" Sliding Door

Be it ELECTRIC or MANUAL operation, AEC offers a wide range of panel constructions and tracks designed to fit your specific need and budget. For life-of-the-building durability select one of the ALPHA[®] panel constructions.

	Panel Type	Weight #/SQ. FT	Weight KG/M2	S.T.C	N.I.C.*	N.R.C.	Panel Thickness	Maximum Width	Maximum Height	Panel Face Sheet		
	5	8.5	41.6	53	42		3.5*(89mm)	60*(1.52M)	35FT (10.7M)	16-Ga. Steel or optional 14-Ga.		
	т	9,1	44.5	54	42		3.5*(89mm)	60*(1.52M)	35IFT (10,7M)	Minimum 16-Ga. Steel		
ha	U	9.7	47.5	53	42		4* (102mm)	60*(1.52M)	60FT (18.3M)	14-Ga. Steel		
Alp	P	12	58.7	49	42	0.65	4*(102mm)	60"(1.52M)	60IFT (18.3M)	14-Ga. Perforated Steel		
-	X	10	48.9	53	42	- S.	3.5"(89mm)	60"(1.52M)	35/FT (10.7M)	14 or 16-Ga. Steel (1-Hr fire)		
12	A	A 5.9	A 5.9	28.9	28.9	49	40	- 78	3.5" (89mm)	54"(1.37M)	24FT (7.3M)	Minimum 20-Ga. Steel
ma	в	6.4	31.3	50	41	1	3.5" (89mm)	54"(1.37M)	24FT (7.3M)	Minimum 20-Ga. Steel		
- Dig	C	6.9	33.8	51	41	- 22	3.5" (89mm)	54"(1.37M)	35 FT (10.7M)	Minimum 18-Ga. Steel		
	D	7.A.	36.2	52	42		3.5"(89mm)	54"(1.37M)	35 FT (10.7M)	Minimum 18-Ga. Steel		
			V		2 <u></u>			w				
	NJ.C.* when te	sted in accord	ance with AST	M E 336-97;1	Deduct 2 point	is when using	ASTM E 336-05	a la servición de la servición				
	With the excep	tion of "X" (fire	rated), all ALP	HA and SIGN	/A panels are	suitable for el	ectric operation					
	With the excep	tion of 'X" (fire	rated), all ALP	HA and SIGM	A panel cons	tructions are	available as curved	l panels				
	ALPHA & SIGM	A panels are o	ne-piece steel	weldments	with (ace shee	ts welded to l	tame					
	Maximum heig	hts are for ind	ividual panel o	operation an	d may be less l	for hinged gr	oups or electric op	eration				

Advanced Equipment's family of extended warranty tracks produce easy, reliable, long term service with virtually no maintenance. These tracks are furnished with a 5 or 10-year warranty period that does not exclude normal wear and tear. Specify tracks #1a, #8 or #8b.

01a 900-pound trolley capacity Composite hade Alaminum case with CR used bar running surface. Mouncat or electric operation 5-YEAR WARRANTY

#1 809-pound trollay capacity Composite trols Alamisum aligs track incorborating softs tilm, Manual coelectric operation 2-YEAR WARRANTY

48 1700-pound trolley capacity Camposite track Aurrierum cate with CEsteel bar running surface. Menual or electric operation 10-YEAR WARRANTY

Composite track: Aluminum case with steel runn surface. Manual operation 2.YEARWARRANTY

88b 1500-pound trolley capacity Compose track Aluminum case with CR steel bar surving surface. Manual or electric operation. 10-YEAR WARRANTY

DWspec[™] provides Architects and Specification Developers with a fully interactive tool for developing operable wall specifications. As a Web-based application, DWspec requires no special software or downloads. DWspec produces one specification for your project even if your project has several walls each with differing characteristics. The user need not be familiar with Advanced Equipment products or their individual characteristics in order to produce a valid, error-free specification. www.advancedequipment.com Operable Wall Specifications as easy as 1,2,3...

REFERENCE: WESTERN ELECTRO-ACOUSTIC LABORATORY, INC. REPORT #94-227

DESCRIPTION

THE TEST SPECIMEN WAS A FULLY OPERABLE ADVANCED EQUIPMENT CORPORATION TYPE "U" PANEL CONSTRUCTION IN A 14' X 9' TEST OPENING.

PROCEDURE

THE PROCEDURES FOR THIS TEST CONFORM TO THE PROVISION AND REQUIREMENTS OF A.S.T.M. E90-85, STANDARD METHOD FOR LABORATORY MEASUREMENT OF AIRBORNE SOUND TRANSMISSION LOSS OF BUILDING PARTITIONS.

RESULTS

THE SOUND TRANSMISSION CLASS RATING DETERMINED IN ACCORDANCE WITH A.S.T.M. E-413 WAS: STC 53

1/3 OCT BND CNTR FREQ TL IN DB 95% CONFIDENCE IN dB DEFICIENCIES	125 34 1.80	160 37 2.64	200 41 1.48	250 44 0.69	315 45 1.55	400 47 1.03	500 50 0.90	630 52 0.91	800 54 0.89
1/3 OCT BND CNTR FREQ TL IN DB 95% CONFIDENCE IN dB DEFICIENCIES	1000 55 .064	1250 57 0.75	1600 59 1.19	2000 59 1.88	2500 56 1.76	3150 57 2.28	4000 56 2.55	5000 57 2.32	sтс 53

SPECIMEN AREA: 114.75 SQ. FT. TEMPERATURE: 70.6 DEG. F RELATIVE HUMIDITY: 46 % TEST DATE: JULY 16, 1995

MANYA STEEL PRODUCTS MANUFACTORY

RECTANGULAR SILENCER

INTRODUCTION

We often hear the noise from ventilation or heating systems that is hardly noticeable because it has no prominent features. The "MYG" rectangular silencer Model: MV series are mainly used in air flow intake, discharge and HVAC Ductwork systems. These silencers are offered in standard dimensions, which can be readily mounted onto the existing duct, combined with an easy calculation and selection method as well as be flexible to suit the client's particular requirements.

Rectangle G.I. Silencer

MATERIALS AND CONSTRUCTION

Standard MYG MV series come with high quality materials, compact construction and assembled with "Pittsburg seam" with natural galvanized finish on the outer case. Both the outer and inter skins shall be made of pregalvanized steel sheets and perforated steel sheets respectively. The weld affected areas and angle frames (optional) are to be protected with cold galvanizing paint finish or corrosion-resistant paint finish. Acoustic in fill using with inorganic glass fiber absorbent material with sufficient density functions to give the optimal intended performance.

MYG MV Series Rectangular Silencer

Specification of Standard Model

	MYG Silencer MV Series
Materials	Model: MV
Thickness of outer casing steel sheets	0.8 to 1.2mm
Thickness of inner perforated steel sheets	0.5mm
Acoustic infill density	32kg/m ³

*Others standard and materials are available base on customer request.

MANYA STEEL PRODUCTS MANUFACTORY

APPLICATIONS

A wide variety of industrial applications can be considered when using "MYG" acoustic silencer for the control of airborne and duct-borne noise associated with common HVAC airflow systems. The use of silencers is to minimize the fan and blower noise at both the side inlets and outlets of the equipment. Commercial acoustic silencers are engineered to achieve a maximum insertion loss with a minimum pressure drop. Normally silencers are their type and applications as follows.

- Air Discharge / Intake
- Duct Silencer
- Cross Talk Silencer
- Air Flow Splitter

ENGINEERING DATA

Static Loss (Pressure Drop)

Determine pressure drop across silencer by the following formula:

Pressure drop, $\Delta P = PD \times V^2(Pa)$

Where PD Value = Pressure loss coefficient

V = Face velocity in m/s (cross sectional size)

Standard Elbows

Special Shaped Elbows

Special Bend Elbows

Packless Silencer

			OCTAVE BAND CENTRE FREQUENCY (Hz)							
Model	<u>Length</u>	<u>PD</u> Value	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVL2	600	0.48	2	4	9	12	19	19	11	4
MVL3	900	0.52	2	5	10	17	21	21	13	5
MVL4	1200	0.69	3	6	13	22	28	28	16	7
MVL5	1500	1.03	4	8	15	28	35	35	21	11
MVL6	1800	1.32	5	9	19	33	42	42	25	14
MVL7	2100	1.88	6	11	22	39	49	49	29	20
MVL8	2400	2.55	7	13	25	45	50	50	44	24
MVL9	2700	3.42	9	15	27	47	50	50	46	29

Insertion Loss of "MV" L-series, dB Low Pressure (Airway 45%)

MANYA STEEL PRODUCTS MANUFACTORY

Insertion Loss of "MV" S-series, dB Medium Pressure (Airway 33%)

			OCTAVE BAND CENTRE FREQUENCY (Hz)									
<u>Model</u>	Length	<u>FD value</u>	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>		
MVS2	600	0.74	4	8	14	20	31	30	24	18		
MVS3	900	0.92	5	10	18	27	34	36	30	21		
MVS4	1200	1.72	6	14	24	37	46	46	40	26		
MVS5	1500	2.3	8	18	27	42	50	50	46	31		
MVS6	1800	3.1	9	19	34	50	50	50	50	39		
MVS7	2100	4.4	11	23	40	50	50	50	50	49		
MVS8	2400	6.4	13	25	45	50	50	50	50	50		
MVS9	2700	8.7	14	27	48	50	50	50	50	50		

Length of each ventilation silencer = 2 x 1500mm

Insertion Loss of "MV" H-series, dB High Pressure (Airway 22%)

		DD	OCTAVE BAND CENTRE FREQUENCY (Hz)							
<u>Model</u>	<u>Length</u>	<u>PD</u> Value	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVH2	600	2.3	6	10	16	26	30	30	26	22
MVH3	900	3.4	9	16	24	37	48	50	50	39
MVH4	1200	5.1	11	21	31	49	50	50	50	46
MVH5	1500	8.1	14	25	39	50	50	50	50	50
MVH6	1800	12.1	16	29	46	50	50	50	50	50
MVH7	2100	16.5	18	33	50	50	50	50	50	50
MVH8	2400	21	20	37	50	50	50	50	50	50
MVH9	2700	23	22	39	50	50	50	50	50	50

DOUBLE DOOR LOBBY HOUSE BY MARION ACOUSTICS STC50 Acoustic Panel

PROJECT:									
TITLE:									
PRE-FABRICATED ACOUSTIC LOBBY HOUSE									
DRAWN:	CAD	DATE:							
CHECKED:	CAD	SCALE:	N.T.S.						
DWG. NO.									

WALL PANEL BY STC50 (100mm THICKNESS) CEILING PANEL BY STC50 (100mm THICKNESS) 2 ACOUSTIC DOORS WITH AIR TIGHT HANDSET OVERALL SIZE: 2000L X 1050W X 2100H

Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

PROJECT PLAN

CONSTRUCTION NOISE MITIGATION MEASURES PLAN

(Ma Tau Kok Shaft Worksite)

TABLE OF CONTENT

Page

1.	INTRODUCTION	3
2.	CONSTRUCTION WORKS / ACTIVITIES OF THE PROJECT	5
3.	ASSESSMENT CRITERIA AND METHODOLOGY	7
4.	NOISE SENSITIVE RECEIVERS	8
5.	ASSESSMENT OF CONSTRUCTION NOISE IMPACT	9
6.	CONCLUSION	11

TABLES

Table 1	Summary of PMEs Proposed for Construction Works
Table 2	Daytime Construction Noise Criteria
Table 3	Summary of Mitigated Noise Level Predicted at the Identified NSRs in the EIA Report
Table 4	Summary of PME with Proposed Mitigation Measures
Table 5	Summary of Cumulative Noise Levels at the NSRs (Mitigated)
Table 6	Updated Mitigated Construction Noise Impact at the Identified NSRs

ANNEX

A	Layout Plan of CKR-CT and CKR-MTKS
В	Construction Programme
С	Photo of the Identified NSRs
D	Details of Noise Enclosure
Е	Predicted Noise Level at the NSRs
F	Cumulative Noise Level at the NSRs
G	Details of Acoustic Materials for Construction of Noise Enclosure

1. INTRODUCTION

1.1 Project Description

- 1.1.1 Bouygues Travaux Publics (BYTP) was commissioned by the Highway Department of the HKSAR as the Main Contractor for the Contract HY/2018/08 Central Kowloon Route Central Tunnel (CKR-CT). This Construction Noise Mitigation Measure Plan (CNMMP) is prepared for Central Kowloon Route Ma Tau Kok Access Shaft (CKR-MTKS) with reference to the approved CNMMP for Central Kowloon Route Kai Tak West (CKR-KTW) under the CKR Contract.
- 1.1.2 Highways Department (HyD) commissioned the Design and Construction Assignment for the Central Kowloon Route in Jun 1998. CKR is a duel 3-lane trunk road across central Kowloon linking the West Kowloon in the west and the proposed Kai Tak Development (KTD) in the east. The CKR will be about 4.7km long with an underground tunnel section of about 3.9km long there will be an underwater tunnel of about 370m long in Kowloon Bay to the north of the To Kwa Wan Typhoon Shelter. It will connect the West Kowloon Highway at Yau Ma Tei Interchange with the road network at Kowloon Bay and the future Trunk Road T2 at KTD which will connect to the future Tseung Kwan O Lam Tin Tunnel (TKO-LTT) and Cross Bay Link (CBL). CKR, Trunk Road T2 and TKO-LTT will form a strategic highway link, namely Route 6, connecting West Kowloon and Tseung Kwan O. Consultancy studies for Trunk Road T2, TKO-LTT and CBL have been commissioned by CEDD. In addition, 3 ventilation buildings, which will be in Yau Ma Tei, Ho Man Tin and ex-Kai Tak airport area, are proposed to ensure acceptable air quality within the tunnel.
- 1.1.3 The Central Kowloon Route Design and Construction Environmental Impact Assessment Report (Register No.: AEIAR-171/2013) was approved with conditions by the Environmental Protection Department (EPD) on 11 July 2013. An Environmental Permit (EP) (No. EP-457/2013) was issued on 9 Aug 2013. Variations of EP (VEP) was subsequently applied for and the latest EP (EP-457/2013/C) was issued by EPD on 16 Jan 2017.
- 1.1.4 The activities planned for the CKR-MTKS construction site under the EP include:
 - Tunnel excavation (Tunneling & enlargement);
 - Cut and cover tunnel.

The overall layout plan of CKR-CT and CKR-MTKS are enclosed in Annex A.

- 1.1.5 Condition 2.9 of the EP No. EP-457/2013/C stipulated that to further reduce the air-borne construction noise impacts on the NSRs: Grand Waterfront Tower 3 and Hang Chien Court Block J, the Permit Holder shall prepare the CNMMP to the Director of EPD for approval. The plan shall include:
 - (a) A schedule of construction works to be carried out at the works areas of the Project within 300m from the NSRs defined by EP;
 - (b) An updated construction methodology of the construction works;
 - (c) An updated Power Mechanical Equipment (PME) list for the construction works;
 - (d) An updated proposal of air-borne construction noise mitigation measures for the identified NSR as mentioned above, including the provision of noise barriers, enclosures;

- (e) Other activities proposed by the Permit Holder; and
- (f) An updated prediction of noise levels in accordance with the above updated information and mitigation proposals in place.
- 1.1.6 The CNMMP will be reviewed upon the proposed change of construction methods or materials. The updated PME listed in Table 1 represented the worst-case scenario which is practicable for completing the works required by the Contract within the scheduled timeframe.

2. CONSTRUCTION WORKS / ACTIVITIES OF THE PROJECT

- 2.1. The programme for the construction works described in above Section 1.1.5 are presented in Annex B.
- 2.2. The proposed construction works will generally follow the methodologies recommended in Chapter 3 of the approved EIA report. Drill and Blast methodology will be adopted for the construction of the central tunnel.
- 2.3. Application of electronic detonator will be adopted for blasting in certain tunnel sections. Electronic detonator was widely used in other tunnel projects in Hong Kong (HATS, WIL, XRL and TKO-LTT). Comparing to the traditional shock tube detonator system, qualitative review revealed that the improved design of electronic detonator can (1) eliminate the likelihood of failure caused by human errors and (2) provide a reliable control of ground vibration thus less ground-borne noise disturbance to the public is anticipated.
- 2.4. A summary of PME proposed for the construction works is shown in Table 1. The respective Sound Power Level (SWL) of the PME can be obtained from:
 - 1) EPD's Technical Memorandum on Noise from Construction Work Other than Percussive Pilling.
 - 2) List of SWLs of other commonly used PME or
 - 3) British Standard 5228 Part 1:2009 Code of Practice for Noise and Vibration Control on Construction and Open Sites.

As recommended in the EIA report, quiet equipment and adjustment in utilization rates should be adopted according to Appendix 5.4 of the EIA report to minimize the noise impact to the NSRs. Extra PME have been proposed to take account the latest construction programme and PME inventory in addition to the quiet PME proposed in the EIA report.

PME (% Operation)	Reference	SWL, dB(A)*
Air blower (100%)	CNP 006	95
Air Compressor (50%)	CNP 002	99
Water Pump, submersible (electric) (100%)	CNP 283	85
Aerial work platform, working height $\leq 13m$ (50%)	BS5228 Table C.4/57	92
Grout mixer (50%)	CNP 105	87
Grout pump (50%)	CNP 106	102
Concrete Mixer (50%)	CNP 045	93
Concrete Lorry Mixer (30%)	CNP 044	104
Shotcreting machine (50%)	BS5228 Table D.6/13	105
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100
Light good vehicle < 5.5 tonne (50%)	CNP 143	98
Loader, wheeled (50%)	CNP 081	109
Ventilation fan (100%)	CNP 241	108
Excavator, tracked (50%)	EPD-07059	103
Breaker, excavator mounted (hydraulic) (50%)	BS5228 Table D.8/13	107
Rock drill, (hydraulic) (50%)	SIL EIA#	105

 Table 1: Summary of PMEs proposed for construction works

Construction Noise Mitigation Measure Plan (CKR-MTKS worksite)

PME (% Operation)	Reference	SWL, dB(A)*					
Mobile crane (50%)	EPD-09573	99					

* Noise data refers to the Quiet Plant in Appendix 5.4 and Appendix 5.6a of the CKR EIA report.

Sound Power Level refers to EPD website (Sound Power Level of other commonly used PME)

BS5228 – Code of practice for noise and vibration control on construction and open sites, and the Technical Memorandum on Noise from Construction Work Other than Percussive Piling (GW-TM) under the Noise Control Ordinance.

** Series of this kind of PME with same or lower SWL will be adopted.

Reference to Approved South Island Line (East) EIA

Referring to the construction programme, west bound (WB) and east bound (EB) tunnel excavation will be conducted at the same duration from April to December 2022. However, as the PMEs will be used alternatively, but not used at the same time, PME configuration will be same as that of solely either WB or EB tunnel excavation.

3. ASSESSMENT CRITERIA AND METHODOLOGY

3.1 Assessment Criteria

3.1.1 Noise impacts arising from the construction works at CKR-MTKS are assessed in accordance with the criteria given in the Technical Memoranda under the Noise Control Ordinance (NCO), and the Technical Memorandum on Environmental Impact Assessment. The daytime construction noise criteria are listed in Table 2.

Table 2: Daytime construction noise criteria

Use	Acceptable Noise Level in Leq (30-min), dB(A)
Residential	75

3.2 Assessment Methodology

- 3.2.1 Construction noise assessment was carried out according to the methodology adopted in the EIA report. The utilization rate for each PME was estimated individually for the corresponding activity to ensure it is practical and consistent with the assumptions made in the EIA report.
- 3.2.2 BYTP confirmed that the programme and plant inventory are reasonable and practicable allowing the completion of works within the schedule timeframe.
- 3.2.3 All mitigation measures and their effectiveness evaluated in the EIA report including adoption of quiet PME, percentage on-time for each PME, movable noise barrier and noise enclosure for the PME were considered in this CNMMP. Details of acoustic materials to construct the noise enclosure are enclosed in Annex G.
- 3.2.4 To predict the noise level, PMEs are divided into groups required for each respective construction task. The purpose is to identify the worst-case scenario representing those PME that will be in use concurrently at any time. The total Sound Pressure Level (SPL) of each construction task at the identified NSR is calculated, according to the Sound Power Level (SWL) of each PME and the distance attenuation to the NSRs. If more than one construction task will be carried out concurrently, the total SPL is predicted by adding up all SPL of concurrent construction tasks in logarithmic scale.
- 3.2.5 Tunnelling works will involve alternating cycles from drilling to mucking out. Therefore, tunnel excavation activities will be operated in sequence rather than concurrently. The relevant noise calculation is conducted in groups accordingly.
- 3.2.6 A positive 3dB(A) façade correction is added to the predicted noise level to account for the façade effect at the NSR.

4. NOISE SENSITIVE RECEIVERS

4.1 According to Condition 2.9 of the EP, Grand Waterfront Tower 3 and Hang Chien Court Block J were identified as a representative NSR for the assessment. The predicted noise levels at the identified NSRs are summarized in Table 3.

Table 3: Summary of Mitigated Noise Level Predicted at the Identified NSRs in EIA Report

NSR ID	NSR Description	Uses	Criterion	Max. Mitigated	Exceedance, dB(A) ^[2]
		[1]	dB(A)	Noise Level, dB(A) ^[2]	
E-N12	Grand Waterfront Tower 3	R	75	75	-
E-N21	Hang Chien Court Block J	R	75	79	4

[1] R- Residential

[2] Bolded values mean exceedance of the relevant noise criteria.

4.2 The locations of identified NSRs are shown in Figure 1:

Figure 1: Location plan of identified NSRs

Photos of identified NSRs are presented in Annex C

5. ASSESSMENT OF CONSTRUCTION NOISE IMPACT

5.1. Mitigation Measures

- 5.1.1. The mitigation measures proposed in the EIA report will be adopted, i.e. Erection of movable barrier and noise enclosure. PME with adopted mitigation measures are summarized in Table 4.
- 5.1.2. Noise reduction of 5dB(A) is proposed for the movable barrier for the PME operating at surface.
- 5.1.3. All PME for tunnel excavation shall be operated at the shaft bottom (>35m below the ground level) with a noise enclosure covering the shaft. In this case, the barrier effect proposed for the PME operating inside the shaft is 20dB(A).
- 5.1.4. Shaft covers were constructed for the PME operating inside access shaft. The noise cover is made of 110mm thick noise panel. A 15.3m x 7.6m opening is remained for daytime operation, which will be closed by a removable cover during restricted hours. The removable cover is made of 110mm thick noise panel, including 2 layers of 5mm thick steel plate sandwiching 100mm thick rockwool infill (100kg/m³). A 4.3m x 2.3m x 2.6m (H) ventilation chamber and 12.5m x 7.2m x 3.7m (H) tally room were installed at intake ventilation opening to enclose the silencer and ventilation fan. A triple door was installed at tally room for man access to make sure at least one door will be closed during man access. Details of the noise cover are presented in Annex D. PME with proposed mitigation measures are summarized in Table 4.

PME (% Operation)	Proposed Mitigation Measures	Noise Reduction, dB(A)
Air blower (100%)		
Air Compressor (50%)		
Water Pump, submersible (electric) (100%)		
Aerial work platform, working height $\leq 13m (50\%)$		
Grout pump (50%)		
Grout mixer (50%)	Noise enclosure	20 (T
Shotcreting Machine (50%)	Noise enclosure	20 (Tunnel)
Light good vehicle < 5.5 tonne (50%)		
Loader, wheeled (50%)		
Ventilation fan (100%)		
Excavator, tracked (50%)		
Breaker, excavator mounted (hydraulic) (50%)		
Rock drill, crawler mounted (hydraulic) (50%)		
Air Compressor (50%)		
Water Pump, submersible (electric) (100%)		
Aerial work platform, working height $\leq 13m$ (50%)		
Concrete Mixer (100%)	Movable barrier	5 (Surface)
Concrete Lorry Mixer (30%)		
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)		
Mobile crane (50%)		

Table 4: Summary of PME with Proposed Mitigation Measures

5.1.5. According to the construction programme of MTKS, noise assessments at the NSRs with implementation of proposed mitigation measures are presented in Annex E. As mentioned in Section 2.4, PME configuration for WB and EB tunnel excavation will be same as solely either WB or EB tunnel excavation. The cumulative noise assessment for the NSRs due to the concurrent construction

activities – Central Kowloon Route – Kai Tak West (CKR-KTW) are presented in Annex F. The cumulative noise levels are summarized in Table 5.

NSR ID	NSR Description	Uses	Criterion dB(A)	Mitigated Noise Level range dB(A)	Maximum Exceedance dB(A)	Exceedance Duration/Months
E-N12	Grand Waterfront Tower 3	R	75	63 - 75	0	0
E-N21	Hang Chien Court Block J	R	75	60 - 74	0	0

Table 5: Summary of Cumulative Noise Levels at the NSRs (Mitigated)

5.1.6. With the implementation of the above-mentioned mitigation measures, no exceedance of construction noise criterion is expected from the residual impacts. The comparison of residual impacts between CKR EIA and this CNMMP is shown in Table 6.

Table 6: Mitigated Construction Noise Impact at the Identified NSRs

NSR	Noise		EIA	Prediction	n	CNMMP Prediction													
	Criteria	Max Noise	Exce	edance Du	uration (Mo	onth)	Max Noise	Exce	ration (Mo	(Month)									
	dB(A)	Level	1-4 dB(A)	5 dB(A)	6 dB(A)	7 dB(A)	Level	1-4 dB(A)	5 dB(A)	6 dB(A)	7 dB(A)								
		dB(A)					dB(A)												
E-N21	75	79	6	-		-	74	-	-	-	-								

5.1.7. According to cumulative noise assessment presented in Annex F, the predicted noise impact contributed from this project is insignificant comparing with the predicted noise impact from the concurrent project (CKR–KTW). Moreover, the maximum noise level predicted at the nearest NSR – Grand Waterfront Tower 3 due to the construction works of MTKS is 63 dB(A), the overall noise level is substantially dominated by the concurrent construction activity of CKR-KTW, and therefore the cumulative noise level does not cause exceedance but is significantly high.

6. CONCLUSION

- 6.1. This CNMMP predicted the construction noise impact arising from the CKR-MTKS construction site to the identified NSRs. This plan has updated the information on PMEs and works programme which will be adopted by Bouygues Travaux Publics. The proposed mitigation measures including use of quiet QPME, movable barriers and noise enclosure will be implemented.
- 6.2. According to the CNMMP prediction, no noise exceedance is predicted at all the NSRs which is better than EIA prediction comparatively. The overall construction noise impact would be reduced for all two NSRs in terms of duration and noise level, when comparing with the EIA prediction.
- 6.3. This CNMMP will be subsequently reviewed and updated along the construction phase. Liaison with the affected parties will be carried out to minimize the construction noise impact as far as practicable. Attention will be paid to the construction activities which are predicted to give noise exceedances. Appropriate mitigation measure such as re-arrangement of noisy activities shall be implemented when necessary.

Annex A

Layout Plan of CKR-CT and CKR-MTKS

		/	
	/35 Q	$\overline{\mathbf{A}}$	N
$^{/n}$ / $^{/}$	/ ···· + / / ··· ~	TY /	$\dot{\mathbf{x}}$
× *1/	± // − × × × × / −	ĭ/ / L	
$\langle \rangle \langle \rangle$			\land)
1 0/10	1/1 / 1/		
		y	У I
× 0// × /	10 × 67/L/		
$ \langle \langle \rangle \rangle$	\sim / \sim //•/		
2	2 1 27		
N7/ //A			
N/ 15			
21 4 12			
~// 渡/L			
5/ Ja //2 //			
e// 44/5	<u> </u>		
V[" 7	_ ŵ//_⊥/		
$\langle \rangle \langle \rangle$	~~/•/		
	. ≈// /		
/			
- L	7/7 2 17		
$/ \searrow $ \checkmark			
/ /	~/ #		
/ /	/		
/	/		
_ / _ /			
\sim /			
/			
7 /			
/ /			
/			
./			
$\sim \sim$			
1.0007			
A Pierit			
/			
/			
/			
/			
1 - 5 5			
e.			
197			
a" /			
/	擬建隊道		
/			
	Proposed Tunnel		
	,		
	~		
, Mari			
erry			
Pier	\sum		
]]		
]]		
	//		
	LT //		
	DRAWNG NO.		REVISION
	_		_
	SCALE	DATE	
	1.1000 (13)	2021.0	5.21
	1.1000 (AS)	2021.0	J.Z I
	EIL E-	DRAWN	
		DRAWN	
	K210521_MTK CNMMP.dwg	I WWC	
		1	

Annex B

Construction Programme

. .

Contract N Central Ko	Central Kowloon Route - Central Tunnel																																					
MTK Major Works Programme				Calendar Year / Month																																		
					20)21				2022												20	23					2024										
item	Description of Works	Duration	Mar	Apr	May	Jul	Aug	Sep	Nov	Dec	Jan	Feb Mar	Apr	Мау	Jun	Jul کسھ	Sep	Oct	Nov	Jan	Feb	Mar	Apr Mav	Jun	lul	Aug	Oct Oct	Nov	Dec	Jan Feb	Mar	Apr	Jun	Jul	Aug	Sep Oct	Nov	Dec
1	Tunnel Excavation (WB Pilot TBM Tunnelling Enlargement)	16 months																																П				1
																				T 																		
2	Tunnel Excavation (EB Tunnelling)	22 months																																				
													İ							İ																		
3	Cut & Cover Tunnel	6 months																																				
																_γ)																		

From April to Dec-2021, WB & EB Tunnel excavation will be conducted at the same time, in which the PMEs between 2 tunnels will be used

Annex C

Photo of Identified NSRs

Noise Sensitive Reservoir Locations								
NSR	Location	Photo						
E-N12	Grand Waterfront Tower 3							
E-N21	Hang Chien Court Block J							

Annex D

Details of Noise Enclosure

Site Plan of CKR Ma Tau Kok Access Shaft

Section View of Ma Tau Kok Access Shaft

Photos of Removable Cover A

External View of Hydraulic Noise Cover (opened)

Tally Room, ventilation Chamber and Man Access Doors

(16(17)18(19) 2 3 WEST 0 NORTH 16171819 3 (1)2 1094SOUTH (1)151413125 $(\mathbf{6})$ 151413125 EAST $\overline{7}$ (11)(8)

SCALE 1 : 90

NOTE: STIFFENERS HAS TO BE W 254x146x 31 UB (NORTH

													_	_
19		NUT	M20						16					
18		LOCK WASHER		Ø20						16				-
17		PLAIN WASHER		Ø20						16				
16		BOLT	Ν	/20x80						16				
15		NUT		M39						4				
14		LOCK WASHER		Ø39						4				
13		PLAIN WASHER		Ø39						4				
12		BOLT	N	\39x150						4				
11	HKCKR/BTP/TTS/ MTS/TSI/537550/ 11	PIN-FRAME	Q	ð50x80		EN24		1		16				
10	HKCKR/BTP/TTS/ MTS/TSI/537550/ 10	PIN-CYLINDER TOP	Ø	40x105		EN24		1		6				
9	HKCKR/BTP/TTS/ MTS/TSI/537550/ 09	PIN-CYLINDER BOTTOM	Ø	50x115		EN24		2		6				
8	HKCKR/BTP/TTS/ MTS/TSI/537550/ 08	PANEL-C						92		1				
7	HKCKR/BTP/TTS/ MTS/TSI/537550/ 07	PANEL-B						133		1				
6	HKCKR/BTP/TTS/ MTS/TSI/537550/ 06	PANEL-A						170		1				
5	HKCKR/BTP/TTS/ MTS/TSI/537550/ 05	ROLLER ASSEMBLY						10		4				
4	HKCKR/BTP/TTS/ MTS/TSI/537550/ 04	CYLINDER								6				
3	HKCKR/BTP/TTS/ MTS/TSI/537550/ 03	FRAME-B						4776		2				
2	HKCKR/BTP/TTS/ MTS/TSI/537550/ 02	FRAME-A						4550		2				
1	HKCKR/BTP/TTS/ MTS/TSI/537550/ 01	BASEFRAME ASSEMBLY						6565		1				
ITEM NO.	PartNO	DESCRIPTION	SPECI	FICATIO	NC	MATER	IAL	PART W	GROSS WT	QTY.	Ν	NOTE	S	
			ł	材料 <u>MAT.</u> 數量			設(「	備名稱 FEM						
▲ 審核			-	QTY. 重量 20		6322	圖》 DW(纸名稱 G.NAME	SELF OPENING 1	NOISE COV	'ER-MTK	頁次 SHEET NO.	-	1 10
UHKU. BY 設計 DESIGNER	SADISH	日期 DATE 02-12-	-2020	WT. ZO			圖》 DW	低代號 G.NO.	HKCKR/BTP/TTS/	MTS/TSI/537	7550/00	版次 REV.	E	-
版權所有.未經 BE OBTAINED	司意,不可複製、傳播 BEFORE ANY USE	本圖任何部分. THE OWNE	RSHIP OF TH	E COPYRIGH	T IN THI	S DRAWING IS	RETAIN ADE.	NED BY THE	ISSUER WHOSE CO	ONSENT MU	ST			

VELDED ON SITE BETWEEN BASEFRAME 8	c
I & SOUTH) WHEREVER NECESSARY	

	設備名稱 ITEM								
26322	圖紙名稱 DWG. NAME	SELF OPENING NOISE COVER-MTK (CLOSED)	<u>頁次</u> ∭₩	$\frac{2}{10}$					
	圖紙代號 DWG.NO.	HKCKR/BTP/TTS/MTS/TSI/537550/00	版次 REV.	Е					
his drawing is retained by the issuer whose consent must reof can be made.									

	設備名稱 ITEM								
26322	圖紙名稱 DWG.NAME	SELF OPENING NOISE COVER-MTK (OPENED)	頁次 SHEET NO.	$\frac{3}{10}$					
	圖紙代號 DWG.NO.	HKCKR/BTP/TTS/MTS/TSI/537550/00	版次 REV.	Е					
HIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST REOF CAN BE MADE.									

Annex E

Predicted Noise Level at the NSRs

Predicted Noise Level for NSR

BOUYGUES TRAVAUX PUBLICS

Grand Waterfront Tower 3

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation (EB Tunnelling & WB Pilot	TBM Tunnelling Enlargemen	t)							
Air Blower	CNP 006	95	6	103	40	-40	-20	3	45.98
Air Compressor (50%)	CNP 002	99	1	99	40	-40	-20	3	41.98
Water Pump, submersible (electric)	CNP 283	85	10	95	40	-40	-20	3	37.98
Mobile crane (50%)	EPD-09573	99	1	99	40	-40	-5	3	56.98
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	40	-40	-20	3	37.98
Grout pump (50%)	CNP 106	102	1	102	40	-40	-20	3	44.98
Grout mixer (50%)	CNP 105	87	1	87	40	-40	-20	3	29.98
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	40	-40	-20	3	47.98
Loader, wheeled (50%)	CNP 081	109	1	109	40	-40	-20	3	51.98
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	40	-40	-5	3	57.98
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	40	-40	-20	3	40.98
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	40	-40	-5	3	50.98
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	40	-40	-20	3	45.98
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	40	-40	-20	3	49.98
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	40	-40	-20	3	47.98
Ventilation fan	CNP 241	108	1	108	40	-40	-20	3	50.98
		-	•	•	•	•	•	Total CNL	62.81

-20	3	45.98
-5	3	61.98
-20	3	44.98
-20	3	29.98
-5	3	56.98
-5	3	57.98
-5	3	48.98
	-20 -5 -20 -20 -20 -5 -5 -5 -5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Total CNL 64.55

Predicted Noise Level for NSR

BOUYGUES TRAVAUX PUBLICS

Hang Chien Court Block J

Project Specific PME Item	Reference	SWL dB(A)	No. of Items	Total SWL, dB(A)	Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Tunnel Excavation (EB Tunnelling & WB Pilot	TBM Tunnelling Enlargemen	t)							
Air Blower	CNP 006	95	6	103	58	-43	-20	3	42.75
Air Compressor (50%)	CNP 002	99	1	99	58	-43	-20	3	38.75
Water Pump, submersible (electric)	CNP 283	85	10	95	58	-43	-20	3	34.75
Mobile crane (50%)	EPD-09573	99	1	99	58	-43	-5	3	53.75
Aerial work platform, working height $\leq 13m (50\%)$	BS 5228 Table C.4	92	2	95	58	-43	-20	3	34.75
Grout pump (50%)	CNP 106	102	1	102	58	-43	-20	3	41.75
Grout mixer (50%)	CNP 105	87	1	87	58	-43	-20	3	26.75
Shotcrete machine (50%)	BS5228 Table D.6/13	105	1	105	58	-43	-20	3	44.75
Loader, wheeled (50%)	CNP 081	109	1	109	58	-43	-20	3	48.75
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	58	-43	-5	3	54.75
Light good vehicle < 5.5 tonne (50%)	CNP 143	98	1	98	58	-43	-20	3	37.75
Concrete Mixer, electric (Ground surface) (50%)	CNP 045	93	1	93	58	-43	-5	3	47.75
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	58	-43	-20	3	42.75
Breaker, excavator mounted, hydraulic (50%)	BS5228 Table D.8/13	107	1	107	58	-43	-20	3	46.75
Rock drill (hydraulic) (50%)	SIL EIA	105	1	105	58	-43	-20	3	44.75
Ventilation fan	CNP 241	108	1	108	58	-43	-20	3	47.75
	·	•	-	•	•	-	•	Total CNL	59.59

Project Specific PME Item	Reference	SWL dB(A)	VL dB(A) No. of Items		Dist. From NSR, m	Dist. Corr., dB(A)	Screening Corr., dB(A)	Façade Corr., dB(A)	CNL, dB(A)
Cut & Cover Tunnel									
Excavator, tracked (Access shaft) (50%)	EPD-07059	103	1	103	58	-43	-20	3	42.75
Concrete Lorry Mixer (30%)	CNP 044	104	1	104	58	-43	-5	3	58.75
Grout pump (50%)	CNP 106	102	1	102	58	-43	-20	3	41.75
Grout mixer (50%)	CNP 105	87	1	87	58	-43	-20	3	26.75
Mobile crane (50%)	EPD-09573	99	1	99	58	-43	-5	3	53.75
Dump Truck, 5.5 tonne $\langle \text{GVW} \leq 38$ tonne (30%)	CNP 068	100	1	100	58	-43	-5	3	54.75
Water Pump, submersible (electric) (Ground surface)	CNP 283	85	4	91	58	-43	-5	3	45.75
								Total CNL	61.33

Annex F

Cumulative Noise Level at the NSRs

Contract No. HY/2018/08 Central Kowloon Route - Central Tunnel

Cumulative No	ise Assessment - CKR-CT & CKR-KTW															Cale	enda	ar Ye	ar /	Мо	nth																
Period with cond	current activities - Mar 2021 - Feb 2023		2021 2022							2023											2024	4															
NSR ID	NSRs	Mar	Apr	May	Inc	Aug	Sep	Oct	Nov	Dec	Jan Fah	Mar	Apr	Мау	un I	lut Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Mav	Jun	Inf	Aug	Sep	Oct	Nov	Dec	Jan	Feb	IVIdI	Apr	l'in L'in	יוחר
					СК	R-C	T Con	nstru	uctio	on N	loise	Lev	el, d	B(A)																							
E-N12	Grand Waterfront Tower 3	63	63	63 6	3 63	63	63	63	63 6	53 6	53 6	3 63	63	63	63 6	63 63	63	63	63	63	63 (63	63 6	3 6	3 63	3 63	3					65 (65 6	65 E	55 6	5 6	,5
E-N21	Hang Chien Court Block J	60	60	60 6	0 60) 60	60	60	60 6	50 6	60 6	0 60	60	60	60 6	60 60	60	60	60	60	60	60	60 6	6 0	0 60	0 60)					61 (61 6	51 6	51 6	51 6	1
	CKR-Kai Tak West Construction Noise Level, dB(A)																																				
E-N12	Grand Waterfront Tower 3	75	75	75 7	5 75	5 75	75	75	75 7	75 7	75 7.	5 75	75	75	75 7	'5 75	75	75	74	74	73 (65															
E-N21	Hang Chien Court Block J	72	72	72 7	2 72	2 72	72	72	72 7	72 7	72 7	2 72	72	72	74 7	3 73	73	75	73	74	71 (67															
	Cumula	itive	Cor	nstru	ctior	n No	ise Lo	evel	, dB	(A) ((Incl	udin	g CK	R-Ka	ai Tal	k We	st &	CKF	R-CT)																	
E-N12	Grand Waterfront Tower 3	75	75	75 7	5 75	5 75	75	75	75 7	75 7	75 7.	5 75	75	75	75 7	'5 75	75	75	74	74	73 (67	63 6	3 6	3 63	3 63	3					65 (65 6	65 E	55 6	5 6	5
E-N21	Hang Chien Court Block J	72	72	72 7	2 72	2 72	72	72	72 7	72 7	72 7	2 72	72	72	74 7	3 73	73	75	73	74	71 (68	60 6	6 0	0 60	0 60)					61 (61 6	51 6	51 6	51 6	1
	As shown in the above table, the cumulative construction noise level is dominated by construction noise from CKR-KTW. The contribution from CKR-CT is negligable in the overall noise level.																																				

Annex G

Details of Acoustic Materials for Construction of Noise Enclosure

- "NAP" Noise panel (SD 150RW)
- "Kinetics" Acoustic Sliding Door
- "MYG" Silencer and Man-access Lobby House

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

Report Ref. No.	:	STR 20027	
Issue Date	:	15 July 2020	
Project Ref. No.	:	J 20027	
Sample No.	:	YP 20027	
Customer	:	NAP Acoustics (Far East) Ltd.	
Address Of Customer	:	Room 1811, 18/F Hong Kong Plaza, 188 Connaught Road West,	

Laboratory Measurement Report for Airborne Sound Insulation to ISO 10140-2 for SNAPAcoustics Noise Barrier Panels model SD150RW

Page 1 of 11

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

NOTES

- 1. This report will be invalid if:
 - 1) Without SNAP Laboratory's seals.
 - 2) Without signatures of analysts, verified and approved by SNAP Laboratory.
 - 3) Partially reproduced without the written approval of SNAP Laboratory.
 - 4) Altered.
- 2. SNAP Laboratory will be responsible for the samples tested only.
- Contact SNAP Laboratory should you have any questions and inquiries about this report within two weeks after received it.

地址: 广东省惠州市惠阳区秋长镇枯园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-380680 传真: 0752-3919311 Ulfu (E-mail):reslab@supnap.com 网址(http):www.supremeacoustics.com

Page 2 of 11

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

TESTING CNAS L8117

CONTENTS

- 1.0 Introduction
- 2.0 Date & Time
- 3.0 Environmental conditions
- 4.0 Test Conducted By
- 5.0 Reference Standards
- 6.0 Description of the test specimen
- 7.0 Instrumentation
- 8.0 Measurement Procedures
- 9.0 Results
- 10.0 Appendix

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:(Tel):0752-3806880
 传真:0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

1.0 Introduction

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory was invited by NAP Acoustics (Far East) Ltd. to determine room-to-room airborne sound insulation of SNAPAcoustics Noise Barrier Panels model SD150RW in accordance with ISO 10140-2:2010.

The test specimen was installed at the test aperture between two Reverberation Rooms at No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China. The volume of the source room named Saturn and the receiving room named Uranus were 127 m^3 and 90.6 m^3 respectively. The structural opening dimensions of the test aperture between two rooms was 4,130 (W) x 3,280 (H) mm.

2.0 Date & Time

12 - 32

\$

Sample was received on 30 June 2020. Test was conducted from 16:00 to 17:30 on 10 July 2020.

3.0 Environmental Conditions

	Source room	Receiving room
温度 Temperature	31.7 deg. C	31.6 deg. C
湿度 Relative humidity	63 %	65 %

4.0 Test Conducted By

Ms. Fanni Lin	Test Engineer
Mr. Amber Lin	Test Engineer

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

5.0 Reference Standards

- "ISO 10140-2:2010 Acoustics Laboratory measurement of sound insulation of building elements Part 2: Measurement of airborne sound insulation "
- "ISO 3382-2:2008 Acoustics Measurement of room acoustic parameters Part 2: Reverberation time in ordinary rooms"
- "ISO 717-1:2013 Acoustics Rating of sound insulation in buildings and of building elements Part 1: Airborne sound insulation"

6.0 Description of the test specimen

- 6.1 The test specimen was said to be SNAPAcoustics Noise Barrier Panels model SD150RW in thickness of 150 mm. The solid outer shell of the panel was made of 0.8 mm galvanized steel sheet with calcium silicate board in density of 1550 kg/m³ as damping materials. The sound absorption face was made of 0.5 mm thick galvanized steel sheet having perforation of 23 %. The panels were filled with 60 kg/m³ rock wool and covered with black fiberglass tissue.
- 6.2 The test specimen consisted of 7 pieces of the said Noise Barrier Panels in size of 3,200 mm (L) x 565 mm (W). The panels were installed into the test aperture which joined together to form an overall size of 12.7 m².
- 6.3 Photograph of the test specimen installed for testing was given in Appendix 10.

 地址:
 广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:
 (Tel):0752-3806880

 传真:
 0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

7.0 Instrumentation

The instrumentation used for the measurement was as follows:

- 7.1 Norsonic Type 150 Dual-Channel Investigator complying with IEC 61672-1 (Class 1) / ANSI S1.43-1997 (Type 1), with 1/3 octave bands filter complying with IEC 61260 / ANSI S1.11-2004 Class 0 / ANSI S1.11-1986, Order 3, Type 0-C, for sound pressure levels measurements. Microphone extension cables, and internal sound source were used during the measurements.
- 7.2 Omni Power Sound Source Type Nor 276 and power amplifier Nor 280.
- 7.3 Bruel & Kjaer Sound Level Calibrator Type 4231, complying with IEC 60942.

8.0 <u>Measurement Procedure</u>

- 8.1 Calibration checks were carried out on the Sound Measuring Instrument with the Sound Level Calibrator, before and after the measurements. The difference in the calibration value before and after measurements should be no more than 0.5 dB.
- La Chanallan La Sa
- 8.2 White Noise was generated in the source room so that the transmitted sound level in the receiving room was at least 6 dB above the background noise level at all frequencies. Source and microphone positions were chosen according to ISO 10140-2:2010. Measurements were taken for three source positions, with six microphone positions in the source and receiving room respectively. The Level Difference $D = L_{p1} L_{p2}$ as per defined in ISO 10140-2:2010 was then calculated.
- 8.3 For the purpose of estimating the Sound Reduction Index *R*, the reverberation time in the receiving room was measured according to ISO 3382-2, choosing two loudspeaker positions and six microphone positions.

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

「日田公」

69

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

8.4 The Sound Reduction Index R was calculated according to ISO 10140-2:2010 as: $R = L_{p1} - L_{p2} + 10\log(S/A)$

where

- L_{p1} is the average sound pressure level in the source room, in decibels;
- is the average sound pressure level in the receiving room, in decibels; L_{p2}
- Sis the area of the test specimen, in square meters;
- A is the equivalent sound absorption area in the receiving room, in square meters.
- 8.5 The Weighted Sound Reduction Index R_w was determined from the value of R in 1/3 octave bands with centre frequencies from 100 Hz to 3,150 Hz, following the procedure given in ISO 717-1:2013.

Note: Rw is a single-number values intended to give rating of airborne sound insulation in view to compare the performance of different systems.

9.0 Results

9.1 Calibration checks were carried out on the sound level meter before and after the measurements. The results were recorded below:

Sound level meter	Nor 150 (Channel 1)	Nor 150 (Channel 2)
Calibrator Reference	94.0 dB	94.0 dB
Before Measurement	94.0 dB	94.0 dB
After Measurement	94.0 dB	94.0 dB
Drift	0 dB	0 dB

地址: 广东省惠州市惠阳区秋长镇桔园路56号

Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail) :reslab@supnap.com 网址 (http):www.supremeacoustics.com

Page 7 of 11

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

9.2 The Sound Reduction Index of SNAPAcoustics Noise Barrier Panels model SD150RW was determined in accordance with ISO 10140-2:2010 to achieve the following values:

1/3 Octave Band Centre Frequency (Hz)	Sound Reduction Index R (dB)	1/1 Octave Band Frequency Sound Reduction Index <i>R</i> (dB)	
50	19.8		
63	22.1	20.9	
80	21.2		
100	28.8	31.3	
125	32.6		
160	34.3		
200	37.6	40.2	
250	41.3		
315	44.0	1	
400	46.6		
500	47.3	47.6	
630	49.3	1	
800	50.0		
1000	53.8	52.8	
1250	58.2	~	
1600	60.2		
2000	61.7	61.8	
2500	64.7		
3150	66.4		
4000	68.3	67.7	
5000	68.7	-	
6300	67.8		
8000	66.3	57.8	
10000	53.4		
Weighted Sound Reduction Index R _w	$R_{\rm w}(C;C_{\rm tr}) = 51$ (-2;-7)		
(ISO 717-1:2013)	Sum of unfavourable	Sum of unfavourable deviations: 31.4 dB	

地址:广东省惠州市惠阳区秋长镇桔园路56号

Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail) :reslab@supnap.com 网址 (http):www.supremeacoustics.com

Page 8 of 11

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

9.3 The following graph shows the Sound Reduction Index of SNAPAcoustics Noise Barrier Panels model SD150RW plotted against frequency (dotted line) and the shifted reference curve (solid line), the bars show the values of the unfavourable deviations for each frequency band.

Figure 1: Sound Reduction Index *R*, reference curve for $R_w = 51 \text{ dB}$ For SNAPAcoustics Noise Barrier Panels model SD150RW

盈普声学(惠州)有限公司声学实验室

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

10.0 Appendix

10.1 Photograph of the test specimen installed for testing.

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话: (Tel):0752-3806880
 传真: 0752-3919311

 电邮 (E-mail):reslab@supnap.com
 网址 (http):www.supremeacoustics.com

EN TR

地址: 广东省惠州市惠阳区秋长镇桔园路56号 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China 电话: (Tel):0752-3806880 传真: 0752-3919311 电邮 (E-mail):reslab@supnap.com 网址 (http):www.supremeacoustics.com

SUPREME NAP Acoustics (Huizhou) Co. Ltd. Laboratory

**** END OF REPORT ****

 地址:广东省惠州市惠阳区秋长镇桔园路56号

 Add: No. 56, Ju Yuan Road, Qiu Chang Town, Huiyang, Huizhou, China

 电话:(Tel):0752-3806880
 传真:0752-3919311

 电邮(E-mail):reslab@supnap.com
 网址(http):www.supremeacoustics.com

Page 11 of 11

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

SIZE	REMARKS
6mm THK. CHANNEL	GRADE Q 235
VERT.) + 4 NOS. (HORI.) PER FRAME	GRADE S275
VERT.) + 4 NOS. (HORI.) PER FRAME	GRADE S275
DF M12 GRADE 4.6	SPACED AT 750mm c/c MAX
N. 220mm	GRADE S275
60 x 5mm SHS	GRADE \$275 HANGER SPACED AT 750mm o/o
ONSTRUCT BY OTHERS	-
ETARY PRODUCT	-
nø WASHER GRADE 4.6	-

V/2018/08	DRAWING NO.						
e - Central Tunnel	HKCKR/BTP/MDG/HMS/TSI/338223						
Y/2018/08 - Central Tunnel SURFACE) OISE ENCLOSURE DOOR	issue status FOR INFORMATION	creation date 21/07/2020	REVISION				
	PAPER SIZE	SCALE	PAGE 10/10				
	A3	N.I.S.					

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

SIZE	REMARKS
6mm THK. CHANNEL	GRADE Q 235
(VERT.) + 7 NOS. (HORI.) PER FRAME	GRADE S275
OF M12 GRADE 4.6	SPACED AT 750mm c/c MAX
IN. 270mm	GRADE S275
60 x 5mm SHS	GRADE S275 HANGER SPACED AT 750mm o/o
ONSTRUCT BY OTHERS	-
ETARY PRODUCT	-
m# WASHER GRADE 4.6	-

Y/2018/08 e - Central Tunnel	drawing no. HKCKR/BTP/N	IDG/HMS/TSI/33	8224
(SURFACE)	issue status	creation date 21/07/2020	revision
OISE ENCLOSURE DOOR	FOR INFORMATION		A
	paper size	scale	page
	A3	N.T.S.	5/5

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF CAN BE MADE.

Y/2018/08	drawing no.	XANNING NO.							
e - Central Tunnel	HKCKR/BTP/N	HKCKR/BTP/MDG/HMS/TSI/338223							
(SURFACE)	issue status	creation date 21/07/2020	revision						
IOISE ENCLOSURE DOOR	FOR INFORMATION		A						
	paper size A3	scale N.T.S.	PAGE 3/10						

	MAIN CONTRACTOR CLIENT	THE SUPERVISOR M PROJECT Contract No. HY/2018/08	DRAWING NO.
		ARLIP M Central Kowloon Route - Central Tunnel	HKCKR/BIP/MDG/HMS/ISI/338223
			ISSUE STATUS CREATION DATE REVISION
		CONTRACTOR'S TEMPORARY WORK DESIGNER DETAIL DETAIL DETAIL DETAIL DETAIL	FOR INFORMATION 21/07/2020 A
		DETAIL DRAWING OF 7.3M NOISE ENGLOSURE DOOR	PAPER SIZE SCALE PAGE
FIRST ISSUE21/07/2020 KNC KNC KNC KNC		durecon	
DESCRIPTION DATE DRAWN DESIGNED CHECKED IN	RGE		A3 N.1.57

THE OWNERSHIP OF THE COPYRIGHT IN THIS DRAWING IS RETAINED BY THE ISSUER WHOSE CONSENT MUST BE OBTAINED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR ANY PART THEREOF

Acoustic Test Report for "Kinetics" Sliding Door

Be it ELECTRIC or MANUAL operation, AEC offers a wide range of panel constructions and tracks designed to fit your specific need and budget. For life-of-the-building durability select one of the ALPHA[®] panel constructions.

	Panel Type	Weight #/SQ. FT	Weight KG/M2	S.T.C	N.I.C.*	N.R.C.	Panel Thickness	Maximum Width	Maximum Height	Panel Face Sheet													
	5	8.5	41.6	53	42		3.5*(89mm)	60"(1.52M)	35FT (10.7M)	16-Ga. Steel or optional 14-Ga.													
Sigma Alpha	т	9,1	44.5	54	42	- x	3.5*(89mm)	60*(1.52M)	35IFT (10,7M)	Minimum 16-Ga. Steel													
	U	9,7	47.5	53	42	- 6	4*(102mm)	60*(1.52M)	60FT (18.3M)	14-Ga. Steel													
	dip	P	12	58.7	49	42	0.65	4*(102mm)	60"(1.52M)	60IFT (18.3M)	14-Ga. Perforated Steel												
-	X	10	48.9	53	42		3.5"(89mm)	60"(1.52M)	35/FT (10.7M)	14 or 16-Ga. Steel (1-Hr fire)													
			di di di di di di di di di di di di di d						-														
- 22	A	5.9	28.9	49	49	49	49	49	49	49	49	49	49	49	49	49	49	40	- 18	3.5"(89mm)	54"(1.37M)	24FT (7.3M)	Minimum 20-Ga. Steel
ma	в	6.4	31.3	50	41		3.5" (89mm)	54"(1.37M)	24FT (7.3M)	Minimum 20-Ga. Steel													
5	¢	6,9	33.8	51	41	- 22	3.5° (89mm)	54" (1.37M)	35 FT (10.7M)	Minimum 18-Ga. Steel													
01	D	7.A.	36.2	52	42		3.5"(89mm)	54" (1.37M)	35 FT (10.7M)	Minimum 18-Ga. Steel													
	NIC* when tested in accordance with ASTM E 136-97. Deduct 2 points when using ASTM E 336-05																						
	With the exception of "X" (fire rated), all ALPHA and SIGMA panels are suitable for electric operation																						
	With the exception of 'X' (fire rated), all ALPHA and SIGMA panel constructions are available as curved panels																						
	ALPHA & SKIM	A pariels are o	ne-piece steel	weldments	with face shee	ts welded to I	fame																
	Maximum heig	hts are for ind	lividual panel o	peration an	d may be less t	for hinged gn	oups or electric op	eration		ARE DO DO DATE IN THE													

Advanced Equipment's family of extended warranty tracks produce easy, reliable, long term service with virtually no maintenance. These tracks are furnished with a 5 or 10-year warranty period that does not exclude normal wear and tear. Specify tracks #1a, #8 or #8b.

01a 900-pound trolley capacity Composite hade Alaminum case with CR used bar running surface. Mouncat or electric operation 5-YEAR WARRANTY

#1 809-pound trollay capacity Composite trols Alamisum aligs track incorporating softs tilm, Manual coelectric operation. 2-YEAR WARRANTY

48 1700-pound trolley capacity Camposite track Aurrierum cate with CEsteel bar running surface. Menual or electric operation 10-YEAR WARRANTY

Composite track Auminum case with steel runn surface. Manual operation 2 YEARWARRANTY

88b 1500-pound trolley capacity Compose track Aluminum case with CR steel bar surving surface. Manual or electric operation. 10-YEAR WARRANTY

DWspec[™] provides Architects and Specification Developers with a fully interactive tool for developing operable wall specifications. As a Web-based application, DWspec requires no special software or downloads. DWspec produces one specification for your project even if your project has several walls each with differing characteristics. The user need not be familiar with Advanced Equipment products or their individual characteristics in order to produce a valid, error-free specification. www.advancedequipment.com Operable Wall Specifications as easy as 1,2,3...

REFERENCE: WESTERN ELECTRO-ACOUSTIC LABORATORY, INC. REPORT #94-227

DESCRIPTION

THE TEST SPECIMEN WAS A FULLY OPERABLE ADVANCED EQUIPMENT CORPORATION TYPE "U" PANEL CONSTRUCTION IN A 14' X 9' TEST OPENING.

PROCEDURE

THE PROCEDURES FOR THIS TEST CONFORM TO THE PROVISION AND REQUIREMENTS OF A.S.T.M. E90-85, STANDARD METHOD FOR LABORATORY MEASUREMENT OF AIRBORNE SOUND TRANSMISSION LOSS OF BUILDING PARTITIONS.

RESULTS

THE SOUND TRANSMISSION CLASS RATING DETERMINED IN ACCORDANCE WITH A.S.T.M. E-413 WAS: STC 53

1/3 OCT BND CNTR FREQ TL IN DB 95% CONFIDENCE IN dB DEFICIENCIES	125 34 1.80	160 37 2.64	200 41 1.48	250 44 0.69	315 45 1.55	400 47 1.03	500 50 0.90	630 52 0.91	800 54 0.89
1/3 OCT BND CNTR FREQ TL IN DB 95% CONFIDENCE IN dB DEFICIENCIES	1000 55 .064	1250 57 0.75	1600 59 1.19	2000 59 1.88	2500 56 1.76	3150 57 2.28	4000 56 2.55	5000 57 2.32	sтс 53

SPECIMEN AREA: 114.75 SQ. FT. TEMPERATURE: 70.6 DEG. F RELATIVE HUMIDITY: 46 % TEST DATE: JULY 16, 1995

MANYA STEEL PRODUCTS MANUFACTORY

RECTANGULAR SILENCER

INTRODUCTION

We often hear the noise from ventilation or heating systems that is hardly noticeable because it has no prominent features. The "MYG" rectangular silencer Model: MV series are mainly used in air flow intake, discharge and HVAC Ductwork systems. These silencers are offered in standard dimensions, which can be readily mounted onto the existing duct, combined with an easy calculation and selection method as well as be flexible to suit the client's particular requirements.

Rectangle G.I. Silencer

MATERIALS AND CONSTRUCTION

Standard MYG MV series come with high quality materials, compact construction and assembled with "Pittsburg seam" with natural galvanized finish on the outer case. Both the outer and inter skins shall be made of pregalvanized steel sheets and perforated steel sheets respectively. The weld affected areas and angle frames (optional) are to be protected with cold galvanizing paint finish or corrosion-resistant paint finish. Acoustic in fill using with inorganic glass fiber absorbent material with sufficient density functions to give the optimal intended performance.

MYG MV Series Rectangular Silencer

Specification of Standard Model

	MYG Silencer MV Series
Materials	Model: MV
Thickness of outer casing steel sheets	0.8 to 1.2mm
Thickness of inner perforated steel sheets	0.5mm
Acoustic infill density	32kg/m ³

*Others standard and materials are available base on customer request.

MANYA STEEL PRODUCTS MANUFACTORY

APPLICATIONS

A wide variety of industrial applications can be considered when using "MYG" acoustic silencer for the control of airborne and duct-borne noise associated with common HVAC airflow systems. The use of silencers is to minimize the fan and blower noise at both the side inlets and outlets of the equipment. Commercial acoustic silencers are engineered to achieve a maximum insertion loss with a minimum pressure drop. Normally silencers are their type and applications as follows.

- Air Discharge / Intake
- Duct Silencer
- Cross Talk Silencer
- Air Flow Splitter

ENGINEERING DATA

Static Loss (Pressure Drop)

Determine pressure drop across silencer by the following formula:

Pressure drop, $\Delta P = PD \times V^2(Pa)$

Where PD Value = Pressure loss coefficient

V = Face velocity in m/s (cross sectional size)

Standard Elbows

Special Shaped Elbows

Special Bend Elbows

Packless Silencer

				OCTA	/E BAN	D CENT	RE FR	EQUEN	CY (Hz)
Model	<u>Length</u>	<u>PD</u> Value	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVL2	600	0.48	2	4	9	12	19	19	11	4
MVL3	900	0.52	2	5	10	17	21	21	13	5
MVL4	1200	0.69	3	6	13	22	28	28	16	7
MVL5	1500	1.03	4	8	15	28	35	35	21	11
MVL6	1800	1.32	5	9	19	33	42	42	25	14
MVL7	2100	1.88	6	11	22	39	49	49	29	20
MVL8	2400	2.55	7	13	25	45	50	50	44	24
MVL9	2700	3.42	9	15	27	47	50	50	46	29

Insertion Loss of "MV" L-series, dB Low Pressure (Airway 45%)

MANYA STEEL PRODUCTS MANUFACTORY

$ \cdot$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	

Insertion Loss of "MV" S-series, dB Medium Pressure (Airway 33%)

				OCTAV	E BANI	O CENT	RE FRE	QUENC	CY (Hz)	
<u>Model</u>	Length	<u>FD value</u>	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVS2	600	0.74	4	8	14	20	31	30	24	18
MVS3	900	0.92	5	10	18	27	34	36	30	21
MVS4	1200	1.72	6	14	24	37	46	46	40	26
MVS5	1500	2.3	8	18	27	42	50	50	46	31
MVS6	1800	3.1	9	19	34	50	50	50	50	39
MVS7	2100	4.4	11	23	40	50	50	50	50	49
MVS8	2400	6.4	13	25	45	50	50	50	50	50
MVS9	2700	8.7	14	27	48	50	50	50	50	50

Length of each ventilation silencer = 2 x 1500mm

Insertion Loss of "MV" H-series, dB High Pressure (Airway 22%)

		DD	OCTAVE BAND CENTRE FREQUENCY (Hz)							
Model	<u>Length</u>	<u>PD</u> Value	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>
MVH2	600	2.3	6	10	16	26	30	30	26	22
MVH3	900	3.4	9	16	24	37	48	50	50	39
MVH4	1200	5.1	11	21	31	49	50	50	50	46
MVH5	1500	8.1	14	25	39	50	50	50	50	50
MVH6	1800	12.1	16	29	46	50	50	50	50	50
MVH7	2100	16.5	18	33	50	50	50	50	50	50
MVH8	2400	21	20	37	50	50	50	50	50	50
MVH9	2700	23	22	39	50	50	50	50	50	50

DOUBLE DOOR LOBBY HOUSE BY MARION ACOUSTICS STC50 Acoustic Panel

PROJECT:								
TITLE:								
PRE-FABRICATED ACOUSTIC LOBBY HOUSE								
DRAWN:	CAD	DATE:						
CHECKED:	CAD	SCALE:	N.T.S.					
DWG. NO.								

WALL PANEL BY STC50 (100mm THICKNESS) CEILING PANEL BY STC50 (100mm THICKNESS) 2 ACOUSTIC DOORS WITH AIR TIGHT HANDSET OVERALL SIZE: 2000L X 1050W X 2100H